The Registry of Open Data on AWS is now available on AWS Data Exchange
All datasets on the Registry of Open Data are now discoverable on AWS Data Exchange alongside 3,000+ existing data products from category-leading data providers across industries. Explore the catalog to find open, free, and commercial data sets. Learn more about AWS Data Exchange

About

This registry exists to help people discover and share datasets that are available via AWS resources. See recent additions and learn more about sharing data on AWS.

See all usage examples for datasets listed in this registry tagged with environmental.


Search datasets (currently 13 matching datasets)

You are currently viewing a subset of data tagged with environmental.


Add to this registry

If you want to add a dataset or example of how to use a dataset to this registry, please follow the instructions on the Registry of Open Data on AWS GitHub repository.

Unless specifically stated in the applicable dataset documentation, datasets available through the Registry of Open Data on AWS are not provided and maintained by AWS. Datasets are provided and maintained by a variety of third parties under a variety of licenses. Please check dataset licenses and related documentation to determine if a dataset may be used for your application.


Tell us about your project

If you have a project using a listed dataset, please tell us about it. We may work with you to feature your project in a blog post.

NASA Prediction of Worldwide Energy Resources (POWER)

agricultureair qualityanalyticsarchivesatmosphereclimateclimate modeldata assimilationdeep learningearth observationenergyenvironmentalforecastgeosciencegeospatialglobalhistoryimagingindustrymachine learningmachine translationmetadatameteorologicalmodelnetcdfopendapradiationsatellite imagerysolarstatisticssustainabilitytime series forecastingwaterweatherzarr

NASA's goal in Earth science is to observe, understand, and model the Earth system to discover how it is changing, to better predict change, and to understand the consequences for life on Earth. The Applied Sciences Program, within the Earth Science Division of the NASA Science Mission Directorate, serves individuals and organizations around the globe by expanding and accelerating societal and economic benefits derived from Earth science, information, and technology research and development.

The Prediction Of Worldwide Energy Resources (POWER) Project, funded through the Applied Sciences Program at NASA Langley Research Center, gathers NASA Earth observation data and parameters related to the fields of surface solar irradiance and meteorology to serve the public in several free, easy-to-access and easy-to-use methods. POWER helps communities become resilient amid observed climate variability by improving data accessibility, aiding research in energy development, building energy efficiency, and supporting agriculture projects.

The POWER project contains over 380 satellite-derived meteorology and solar energy Analysis Ready Data (ARD) at four temporal levels: hourly, daily, monthly, and climatology. The POWER data archive provides data at the native resolution of the source products. The data is updated nightly to maintain near real time availability (2-3 days for meteorological parameters and 5-7 days for solar). The POWER services catalog consists of a series of RESTful Application Programming Interfaces, geospatial enabled image services, and web mapping Data Access Viewer. These three service offerings support data discovery, access, and distribution to the project’s user base as ARD and as direct application inputs to decision support tools.

The latest data version update includes hourly...

Details →

Usage examples

See 18 usage examples →

NOAA Operational Forecast System (OFS)

climatecoastaldisaster responseenvironmentalmeteorologicaloceanswaterweather

ANNOUNCEMENTS: [NOS OFS Version Updates and Implementation of Upgraded Oceanographic Forecast Modeling Systems for Lakes Superior and Ontario; Effective October 25, 2022}(https://www.weather.gov/media/notification/pdf2/scn22-91_nos_loofs_lsofs_v3.pdf)

For decades, mariners in the United States have depended on NOAA's Tide Tables for the best estimate of expected water levels. These tables provide accurate predictions of the astronomical tide (i.e., the change in water level due to the gravitational effects of the moon and sun and the rotation of the Earth); however, they cannot predict water-level changes due to wind, atmospheric pressure, and river flow, which are often significant.

The National Ocean Service (NOS) has the mission and mandate to provide guidance and information to support navigation and coastal needs. To support this mission, NOS has been developing and implementing hydrodynamic model-based Operational Forecast Systems.

This forecast guidance provides oceanographic information that helps mariners safely navigate their local waters. This national network of hydrodynamic models provides users with operational nowcast and forecast guidance (out to 48 – 120 hours) on parameters such as water levels, water temperature, salinity, and currents. These forecast systems are implemented in critical ports, harbors, estuaries, Great Lakes and coastal waters of the United States, and form a national backbone of real-time data, tidal predictions, data management and operational modeling.

Nowcasts and forecasts are scientific predictions about the present and future states of water levels (and possibly currents and other relevant oceanographic variables, such as salinity and temperature) in a coastal area. These predictions rely on either observed data or forecasts from a numerical model. A nowcast incorporates recent (and often near real-time) observed meteorological, oceanographic, and/or river flow rate data. A nowcast covers the period from the recent past (e.g., the past few days) to the present, and it can make predictions for locations where observational data are not available. A forecast incorporates meteorological, oceanographic, and/or river flow rate forecasts and makes predictions for times where observational data will not be available. A forecast is usually initiated by the results of a nowcast.

OFS generally runs four times per day (every 6 hours) on NOAA's Weather and Climate Operational Supercomputing Systems (WCOSS) in a standard Coastal Ocean Modeling Framework (COMF) developed by the Center for Operational Oceanographic Products and Services (CO-OPS). COMF is a set...

Details →

Usage examples

See 11 usage examples →

Multi-Scale Ultra High Resolution (MUR) Sea Surface Temperature (SST)

climateearth observationenvironmentalnatural resourceoceanssatellite imagerywaterweather

A global, gap-free, gridded, daily 1 km Sea Surface Temperature (SST) dataset created by merging multiple Level-2 satellite SST datasets. Those input datasets include the NASA Advanced Microwave Scanning Radiometer-EOS (AMSR-E), the JAXA Advanced Microwave Scanning Radiometer 2 (AMSR-2) on GCOM-W1, the Moderate Resolution Imaging Spectroradiometers (MODIS) on the NASA Aqua and Terra platforms, the US Navy microwave WindSat radiometer, the Advanced Very High Resolution Radiometer (AVHRR) on several NOAA satellites, and in situ SST observations from the NOAA iQuam project. Data are available fro...

Details →

Usage examples

See 10 usage examples →

Department of Energy's Open Energy Data Initiative (OEDI)

energyenvironmentalgeospatiallidarmodelsolar

Data released under the Department of Energy's (DOE) Open Energy Data Initiative (OEDI). The Open Energy Data Initiative aims to improve and automate access of high-value energy data sets across the U.S. Department of Energy’s programs, offices, and national laboratories. OEDI aims to make data actionable and discoverable by researchers and industry to accelerate analysis and advance innovation.

Details →

Usage examples

See 9 usage examples →

NREL Wind Integration National Dataset

environmentalgeospatialmeteorological

Released to the public as part of the Department of Energy's Open Energy Data Initiative, the Wind Integration National Dataset (WIND) is an update and expansion of the Eastern Wind Integration Data Set and Western Wind Integration Data Set. It supports the next generation of wind integration studies.

Details →

Usage examples

See 9 usage examples →

CMIP6 GCMs downscaled using WRF

agricultureatmosphereclimateearth observationenvironmentalmodeloceanssimulationsweather

High-resolution historical and future climate simulations from 1980-2100

Details →

Usage examples

See 8 usage examples →

NOAA Water-Column Sonar Data Archive

biodiversityearth observationecosystemsenvironmentalgeospatialmappingoceans

Water-column sonar data archived at the NOAA National Centers for Environmental Information.

Details →

Usage examples

See 8 usage examples →

Radiant MLHub

cogearth observationenvironmentalgeospatiallabeledmachine learningsatellite imagerystac

Radiant MLHub is an open library for geospatial training data that hosts datasets generated by Radiant Earth Foundation's team as well as other training data catalogs contributed by Radiant Earth’s partners. Radiant MLHub is open to anyone to access, store, register and/or share their training datasets for high-quality Earth observations. All of the training datasets are stored using a SpatioTemporal Asset Catalog (STAC) compliant catalog and exposed through a common API. Training datasets include pairs of imagery and labels for different types of machine learning problems including image ...

Details →

Usage examples

See 8 usage examples →

Toxicant Exposures and Responses by Genomic and Epigenomic Regulators of Transcription (TaRGET)

bioinformaticsbiologyenvironmentalepigenomicsgeneticgenomiclife sciences

The TaRGET (Toxicant Exposures and Responses by Genomic and Epigenomic Regulators of Transcription) Program is a research consortium funded by the National Institute of Environmental Health Sciences (NIEHS). The goal of the collaboration is to address the role of environmental exposures in disease pathogenesis as a function of epigenome perturbation, including understanding the environmental control of epigenetic mechanisms and assessing the utility of surrogate tissue analysis in mouse models of disease-relevant environmental exposures.

Details →

Usage examples

See 8 usage examples →

Coupled Model Intercomparison Project 6

agricultureatmosphereclimateearth observationenvironmentalmodeloceanssimulationsweather

The sixth phase of global coupled ocean-atmosphere general circulation model ensemble.

Details →

Usage examples

See 7 usage examples →

Materials Project Data

chemistrycloud computingdata assimilationdigital assetsdigital preservationenergyenvironmentalfree softwaregenomeHPCinformation retrievalinfrastructurejsonmachine learningmaterials sciencemolecular dynamicsmoleculeopen source softwarephysicspost-processingx-ray crystallography

Materials Project is an open database of computed materials properties aiming to accelerate materials science research. The resources in this OpenData dataset contain the raw, parsed, and build data products.

Details →

Usage examples

See 7 usage examples →

NOAA National Water Model CONUS Retrospective Dataset

agricultureagricultureclimatedisaster responseenvironmentaltransportationweather

The NOAA National Water Model Retrospective dataset contains input and output from multi-decade CONUS retrospective simulations. These simulations used meteorological input fields from meteorological retrospective datasets. The output frequency and fields available in this historical NWM dataset differ from those contained in the real-time operational NWM forecast model. Additionally, note that no streamflow or other data assimilation is performed within any of the NWM retrospective simulations

One application of this dataset is to provide historical context to current near real-time streamflow, soil moisture and snowpack conditions. The retrospective data can be used to infer flow frequencies and perform temporal analyses with hourly streamflow output and 3-hourly land surface output. This dataset can also be used in the development of end user applications which require a long baseline of data for system training or verification purposes.

...

Details →

Usage examples

See 7 usage examples →

OpenAQ

air qualitycitiesenvironmentalgeospatial

Global, aggregated physical air quality data from public data sources provided by government, research-grade and other sources. These awesome groups do the hard work of measuring these data and publicly sharing them, and our community makes them more universally-accessible to both humans and machines.

Details →

Usage examples

See 7 usage examples →

Scottish Public Sector LiDAR Dataset

citiescoastalcogelevationenvironmentallidarurban

This dataset is Lidar data that has been collected by the Scottish public sector and made available under the Open Government Licence. The data are available as point cloud (LAS format or in LAZ compressed format), along with the derived Digital Terrain Model (DTM) and Digital Surface Model (DSM) products as Cloud optimized GeoTIFFs (COG) or standard GeoTIFF. The dataset contains multiple subsets of data which were each commissioned and flown in response to different organisational requirements. The details of each can be found at https://remotesensingdata.gov.scot/data#/list

Details →

Usage examples

See 7 usage examples →

10m Annual Land Use Land Cover (9-class)

cogearth observationenvironmentalgeospatialland coverland usemachine learningmappingplanetarysatellite imagerystacsustainability

This dataset, produced by Impact Observatory, Microsoft, and Esri, displays a global map of land use and land cover (LULC) derived from ESA Sentinel-2 imagery at 10 meter resolution for the years 2017 - 2023. Each map is a composite of LULC predictions for 9 classes throughout the year in order to generate a representative snapshot of each year. This dataset was generated by Impact Observatory, which used billions of human-labeled pixels (curated by the National Geographic Society) to train a deep learning model for land classification. Each global map was produced by applying this model to ...

Details →

Usage examples

See 6 usage examples →

Pacific Ocean Sound Recordings

acousticsbiodiversitybiologyclimatecoastaldeep learningecosystemsenvironmentalmachine learningmarine mammalsoceansopen source software

This project offers passive acoustic data (sound recordings) from a deep-ocean environment off central California. Recording began in July 2015, has been nearly continuous, and is ongoing. These resources are intended for applications in ocean soundscape research, education, and the arts.

Details →

Usage examples

See 6 usage examples →

CMAS Data Warehouse

air qualityclimateenvironmentalgeospatialmeteorological

CMAS Data Warehouse on AWS collects and disseminates meteorology, emissions and air quality model input and output for Community Multiscale Air Quality (CMAQ) Model Applications. This dataset is available as part of the AWS Open Data Program, therefore egress fees are not charged to either the host or the person downloading the data. This S3 bucket is maintained as a public service by the University of North Carolina's CMAS Center, the US EPA’s Office of Research and Development, and the US EPA’s Office of Air and Radiation. Metadata and DOIs for datasets included in the CMAS Data Wareho...

Details →

Usage examples

See 5 usage examples →

Global Seasonal Sentinel-1 Interferometric Coherence and Backscatter Data Set

agriculturecogearth observationearthquakesecosystemsenvironmentalgeologygeophysicsgeospatialglobalinfrastructuremappingnatural resourcesatellite imagerysynthetic aperture radarurban

This data set is the first-of-its-kind spatial representation of multi-seasonal, global SAR repeat-pass interferometric coherence and backscatter signatures. Global coverage comprises all land masses and ice sheets from 82 degrees northern to 79 degrees southern latitude. The data set is derived from high-resolution multi-temporal repeat-pass interferometric processing of about 205,000 Sentinel-1 Single-Look-Complex data acquired in Interferometric Wide-Swath mode (Sentinel-1 IW mode) from 1-Dec-2019 to 30-Nov-2020. The data set was developed by Earth Big Data LLC and Gamma Remote Sensing AG, under contract for NASA's Jet Propulsion Laboratory. ...

Details →

Usage examples

See 5 usage examples →

NOAA National Air Quality Forecast Capability (NAQFC) Regional Model Guidance

agricultureclimatedisaster responseenvironmentalmeteorologicalweather

The National Air Quality Forecasting Capability (NAQFC) dataset contains model-generated Air-Quality (AQ) forecast guidance from three different prediction systems. The first system is a coupled weather and atmospheric chemistry numerical forecast model, known as the Air Quality Model (AQM). It is used to produce forecast guidance for ozone (O3) and particulate matter with diameter equal to or less than 2.5 micrometers (PM2.5) using meteorological forecasts based on NCEP’s operational weather forecast models such as North American Mesoscale Models (NAM) and Global Forecast System (GFS), and atmospheric chemistry based on the EPA’s Community Multiscale Air Quality (CMAQ) model. In addition, the modeling system incorporates information related to chemical emissions, including anthropogenic emissions provided by the EPA and fire emissions from NOAA/NESDIS. The NCEP NAQFC AQM output fields in this archive include 72-hr forecast products of model raw and bias-correction predictions, extending back to 1 January 2020. All of the output was generated by the contemporaneous operational AQM, beginning with AQMv5 in 2020, with upgrades to AQMv6 on 20 July 2021, and AQMv7 on 14 May 2024. The history of AQM upgrades is documented here

The second prediction is known as the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT). It is a widely used atmospheric transport and dispersion model containing an internal dust-generation module. It provides forecast guidance for atmospheric dust concentration and, prior to 28 June 2022, it also provided the NAQFC forecast guidance for smoke. Since that date, the third prediction system, a regional numerical weather prediction (NWP) model known as the Rapid Refresh (RAP) model, has subsumed HYSPLIT for operational smoke guidance, simulating the emission, transport, and deposition of smoke particles that originate from biomass burning (fires) and anthropogenic sources.

The output from each of these modeling systems is generated over three separate domains, one covering CONUS, one Alaska, and the other Hawaii. Currently, for this archive, the ozone, (PM2.5), and smoke output is available over all three domains, while dust products are available only over the CONUS domain. The predicted concentrations of all species in the lowest model layer (i.e., the layer in contact with the surface) are available, as are vertically integrated values of smoke and dust. The data is gridded horizontally within each domain, with a grid spacing of approximately 5 km over CONUS, 6 km over Alaska, and 2.5 km over Hawaii. Ozone concentrations are provided in parts per billion (PPB), while the concentrations of all other species are quantified in units of micrograms per cubic meter (ug/m3), except for the column-integrated smoke values which are expressed in units of mg/m2.

Temporally, O3 and PM2.5 are available as maximum and/or averaged values over various time periods. Specifically, O3 is available in both 1-hour and 8-hour (backward calculated) averages, as well as preceding 1-hour and 8-hour maximum values. Similarly, PM2.5 is available in 1-hour and 24-hour average values and 24-hour maximum values. In addition, all O3 and PM2.5 fields are available with bias-corrected magnitudes, based on derived model biases relative to observations.

The AQM produces hourly forecast guidance for O3 and PM2.5 out to 72 hours twice per day, starting at 0600 and 1...

Details →

Usage examples

See 5 usage examples →

Ozone Monitoring Instrument (OMI) / Aura NO2 Tropospheric Column Density

air qualityatmosphereearth observationenvironmentalgeospatialsatellite imagery

NO2 tropospheric column density, screened for CloudFraction < 30% global daily composite at 0.25 degree resolution for the temporal range of 2004 to May 2020. Original archive data in HDF5 has been processed into a Cloud-Optimized GeoTiff (COG) format. Quality Assurance - This data has been validated by the NASA Science Team at Goddard Space Flight Center.Cautionary Note: https://airquality.gsfc.nasa.gov/caution-interpretation.

Details →

Usage examples

See 5 usage examples →

SPARTAN Data

air qualityenvironmental

SPARTAN (Surface PARTiculate mAtter Network) measures and provides surface ambient particulate matter (PM2.5 and PM10) concentration and the chemical composition around the world, with the purpose of connecting ground-based PM2.5 and satellite remote sensing.

Details →

Usage examples

See 5 usage examples →

Sofar Spotter Archive

climateenvironmentalmeteorologicaloceansoceanssustainabilityweather

This dataset includes archival hourly data from the [Sofar Spotter buoy global network] (https://weather.sofarocean.com/) from 2019 to March 2022.

Details →

Usage examples

See 5 usage examples →

SondeHub Radiosonde Telemetry

climateenvironmentalGPSweather

SondeHub Radiosonde telemetry contains global radiosonde (weather balloon) data captured by SondeHub from our participating radiosonde_auto_rx receiving stations. radiosonde_auto_rx is a open source project aimed at receiving and decoding telemetry from airborne radiosondes using software-defined-radio techniques, enabling study of the telemetry and sometimes recovery of the radiosonde itself. Currently 313 receiver stations are providing data for an average of 384 radiosondes a day. The data within this repository contains received telemetry frames, including radiosonde type, gps position, a...

Details →

Usage examples

See 5 usage examples →

Chalmers Cloud Ice Climatology

atmosphereclimatedeep learningenvironmentalexplorationgeophysicsgeosciencegeospatialglobaliceplanetarysatellite imageryzarr

The Chalmers Cloud Ice Climatology (CCIC) is a novel, deep-learning-based climate record of ice-particle concentrations in the atmosphere. CCIC results are available at high spatial and temporal resolution (0.07° / 3 h from 1983, 0.036° / 30 min from 2000) and thus ideally suited for evaluating high-resolution weather and climate models or studying individual weather systems.

Details →

Usage examples

See 4 usage examples →

NOAA High-Resolution Rapid Refresh (HRRR) Model

agricultureclimatedisaster responseenvironmentalweather

The HRRR is a NOAA real-time 3-km resolution, hourly updated, cloud-resolving, convection-allowing atmospheric model, initialized by 3km grids with 3km radar assimilation. Radar data is assimilated in the HRRR every 15 min over a 1-h period adding further detail to that provided by the hourly data assimilation from the 13km radar-enhanced Rapid Refresh.

The HRRR ZARR formatted data was originally generated by the University of Utah under a grant provided by NOAA. They are are continuing to publish ZARR versions of HRRR data. For information about data in the s3://hrrrzarr/ please contact Details →

Usage examples

See 4 usage examples →

SILO climate data on AWS

agricultureclimateearth observationenvironmentalmeteorologicalmodelsustainabilitywaterweather

SILO is a database of Australian climate data from 1889 to the present. It provides continuous, daily time-step data products in ready-to-use formats for research and operational applications. SIL...

Details →

Usage examples

See 4 usage examples →

Sea Surface Temperature Daily Analysis: European Space Agency Climate Change Initiative product version 2.1

climateearth observationenvironmentalgeospatialglobaloceans

Global daily-mean sea surface temperatures, presented on a 0.05° latitude-longitude grid, with gaps between available daily observations filled by statistical means, spanning late 1981 to recent time. Suitable for large-scale oceanographic meteorological and climatological applications, such as evaluating or constraining environmental models or case-studies of marine heat wave events. Includes temperature uncertainty information and auxiliary information about land-sea fraction and sea-ice coverage. For reference and citation see: www.nature.com/articles/s41597-019-0236-x.

Details →

Usage examples

See 4 usage examples →

Sentinel-3

cogearth observationenvironmentalgeospatiallandoceanssatellite imagerystac

This data set consists of observations from the Sentinel-3 satellite of the European Commission’s Copernicus Earth Observation Programme. Sentinel-3 is a polar orbiting satellite that completes 14 orbits of the Earth a day. It carries the Ocean and Land Colour Instrument (OLCI) for medium resolution marine and terrestrial optical measurements, the Sea and Land Surface Temperature Radiometer (SLSTR), the SAR Radar Altimeter (SRAL), the MicroWave Radiometer (MWR) and the Precise Orbit Determination (POD) instruments. The satellite was launched in 2016 and entered routine operational phase in 201...

Details →

Usage examples

See 4 usage examples →

Sentinel-5P Level 2

air qualityatmospherecogearth observationenvironmentalgeospatialsatellite imagerystac

This data set consists of observations from the Sentinel-5 Precursor (Sentinel-5P) satellite of the European Commission’s Copernicus Earth Observation Programme. Sentinel-5P is a polar orbiting satellite that completes 14 orbits of the Earth a day. It carries the TROPOspheric Monitoring Instrument (TROPOMI) which is a spectrometer that senses ultraviolet (UV), visible (VIS), near (NIR) and short wave infrared (SWIR) to monitor ozone, methane, formaldehyde, aerosol, carbon monoxide, nitrogen dioxide and sulphur dioxide in the atmosphere. The satellite was launched in October 2017 and entered ro...

Details →

Usage examples

See 4 usage examples →

Blended TROPOMI+GOSAT Satellite Data Product for Atmospheric Methane

climateenvironmentalsatellite imagery

A dataset of satellite retrievals of atmospheric methane that extends from 30 April 2018 to present.

Details →

Usage examples

See 3 usage examples →

NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP-CMIP6)

air temperatureclimateclimate modelclimate projectionsCMIP6cogearth observationenvironmentalglobalmodelNASA Center for Climate Simulation (NCCS)near-surface relative humiditynear-surface specific humiditynetcdfprecipitation

The NEX-GDDP-CMIP6 dataset is comprised of global downscaled climate scenarios derived from the General Circulation Model (GCM) runs conducted under the Coupled Model Intercomparison Project Phase 6 (CMIP6) and across two of the four "Tier 1" greenhouse gas emissions scenarios known as Shared Socioeconomic Pathways (SSPs). The CMIP6 GCM runs were developed in support of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6). This dataset includes downscaled projections from ScenarioMIP model runs for which daily scenarios were produced and distributed...

Details →

Usage examples

See 3 usage examples →

NOAA - hourly position, current, and sea surface temperature from drifters

climateenvironmentalmeteorologicaloceanssustainabilityweather

This dataset includes hourly sea surface temperature and current data collected by satellite-tracked surface drifting buoys ("drifters") of the NOAA Global Drifter Program. The Drifter Data Assembly Center (DAC) at NOAA’s Atlantic Oceanographic and Meteorological Laboratory (AOML) has applied quality control procedures and processing to edit these observational data and obtain estimates at regular hourly intervals. The data include positions (latitude and longitude), sea surface temperatures (total, diurnal, and non-diurnal components) and velocities (eastward, northward) with accompanying uncertainty estimates. Metadata include identification numbers, experiment number, start location and time, end location and time, drogue loss date, death code, manufacturer, and drifter type.

Please note that data from the Global Drifter Program are also available at 6-hourly intervals but derived via alternative methods. The 6-hourly dataset goes back further in time (1979) and may be more appropriate for studies of long-term, low frequency patterns of the oceanic circulation. Yet, the 6-hourly dataset does not resolve fully high-frequency processes such as tides and inertial oscillations as well as sea surface temperature diurnal variability.

[CITING NOAA - hourly position, current, and sea surface temperature from drifters data. Citation for this dataset should include the following information below.]
Elipot, Shane; Sykulski, Adam; Lumpkin, Rick; ...

Details →

Usage examples

See 3 usage examples →

NOAA Global Forecast System (GFS)

agricultureclimatedisaster responseenvironmentalmeteorologicalweather

NOTE - Upgrade NCEP Global Forecast System to v16.3.0 - Effective November 29, 2022 See notification HERE

The Global Forecast System (GFS) is a weather forecast model produced by the National Centers for Environmental Prediction (NCEP). Dozens of atmospheric and land-soil variables are available through this dataset, from temperatures, winds, and precipitation to soil moisture and atmospheric ozone concentration. The entire globe is covered by the GFS at a base horizontal resolution of 18 miles (28 kilometers) between grid points, which is used by the operational forecasters who predict weather out to 16 days in the future. Horizontal resolution drops to 44 miles (70 kilometers) between grid point for forecasts between one week and two weeks.

The NOAA Global Forecast Systems (GFS) Warm Start Initial Conditions are produced by the National Centers for Environmental Prediction Center (NCEP) to run operational deterministic medium-range numerical weather predictions.
The GFS is built with the GFDL Finite-Volume Cubed-Sphere Dynamical Core (FV3) and the Grid-Point Statistical Interpolation (GSI) data assimilation system.
Please visit the links below in the Documentation section to find more details about the model and the data...

Details →

Usage examples

See 3 usage examples →

National Herbarium of NSW

agriculturebiodiversitybiologyclimatedigital preservationecosystemsenvironmental

The National Herbarium of New South Wales is one of the most significant scientific, cultural and historical botanical resources in the Southern hemisphere. The 1.43 million preserved plant specimens have been captured as high-resolution images and the biodiversity metadata associated with each of the images captured in digital form. Botanical specimens date from year 1770 to today, and form voucher collections that document the distribution and diversity of the world's flora through time, particularly that of NSW, Austalia and the Pacific.The data is used in biodiversity assessment, syste...

Details →

Usage examples

See 3 usage examples →

QIIME 2 Tutorial Data

bioinformaticsbiologyecosystemsenvironmentalgeneticgenomichealthlife sciencesmetagenomicsmicrobiome

QIIME 2 (pronounced “chime two”) is a microbiome multi-omics bioinformatics and data science platform that is trusted, free, open source, extensible, and community developed and supported.

Details →

Usage examples

See 3 usage examples →

Wildfire Projections to Support Climate Resilience

agricultureclimateclimate modelclimate projectionsdisaster responseelectricityenergyenvironmentalgeospatialmeteorologicalsolarsustainabilityweather

Wildfire projections for California and her environs in support of California's Fifth Climate Assessment supported with historical weather observations and renewable energy capacity profiles for grid operations.

Details →

Usage examples

See 6 usage examples →

Africa Soil Information Service (AfSIS) Soil Chemistry

agricultureenvironmentalfood securitylife sciencesmachine learning

This dataset contains soil infrared spectral data and paired soil property reference measurements for georeferenced soil samples that were collected through the Africa Soil Information Service (AfSIS) project, which lasted from 2009 through 2018. In this release, we include data collected during Phase I (2009-2013.) Georeferenced samples were collected from 19 countries in Sub-Saharan African using a statistically sound sampling scheme, and their soil properties were analyzed using both conventional soil testing methods and spectral methods (infrared diffuse reflectance spectroscopy). The two ...

Details →

Usage examples

See 2 usage examples →

Atmospheric Models from Météo-France

agricultureclimatedisaster responseearth observationenvironmentalmeteorologicalmodelweather

Global and high-resolution regional atmospheric models from Météo-France.

  • ARPEGE World covers the entire world at a base horizontal resolution of 0.5° (~55km) between grid points, it predicts weather out up to 114 hours in the future.
  • ARPEGE Europe covers Europe and North-Africa at a base horizontal resolution of 0.1° (~11km) between grid points, it predicts weather out up to 114 hours in the future.
  • AROME France covers France at a base horizontal resolution of 0.025° (~2.5km) between grid points, it predicts weather out up to 42 hours in the future.
  • AROME France HD covers France and neighborhood at a base horizontal resolution of 0.01° (~1.5km) between grid points, it predicts weather out up to 42 hours in the future.
Dozens of atmospheric variables are avail...

Details →

Usage examples

See 2 usage examples →

Downscaled Climate Data for Alaska (v1.1, August 2023)

agricultureclimatecoastalearth observationenvironmentalsustainabilityweather

This dataset contains historical and projected dynamically downscaled climate data for the State of Alaska and surrounding regions at 20km spatial resolution and hourly temporal resolution. Select variables are also summarized into daily resolutions. This data was produced using the Weather Research and Forecasting (WRF) model (Version 3.5). We downscaled both ERA-Interim historical reanalysis data (1979-2015) and both historical and projected runs from 2 GCM’s from the Coupled Model Inter-comparison Project 5 (CMIP5): GFDL-CM3 and NCAR-CCSM4 (historical run: 1970-2005 and RCP 8.5: 2006-2100)....

Details →

Usage examples

See 2 usage examples →

NOAA Analysis of Record for Calibration (AORC) Dataset

agricultureagricultureclimatedisaster responseenvironmentaltransportationweather

The Analysis Of Record for Calibration (AORC) is a gridded record of near-surface weather conditions covering the continental United States and Alaska and their hydrologically contributing areas. It is defined on a latitude/longitude spatial grid with a mesh length of 30 arc seconds (~800 m), and a temporal resolution of one hour. Elements include hourly total precipitation, temperature, specific humidity, terrain-level pressure, downward longwave and shortwave radiation, and west-east and south-north wind components. It spans the period from 1979 across the Continental U.S. (CONUS) and from 1981 across Alaska, to the near-present (at all locations). This suite of eight variables is sufficient to drive most land-surface and hydrologic models and is used as input to the National Water Model (NWM) retrospective simulation. While the native AORC process generates netCDF output, the data is post-processed to create a cloud optimized Zarr formatted equivalent for dissemination using cloud technology and infrastructure.

AORC Version 1.1 dataset creation
The AORC dataset was created after reviewing, identifying, and processing multiple large-scale, observation, and analysis datasets. There are two versions of The Analysis Of Record for Calibration (AORC) data.

The initial AORC Version 1.0 dataset was completed in November 2019 and consisted of a grid with 8 elements at a resolution of 30 arc seconds. The AORC version 1.1 dataset was created to address issues "see Table 1 in Fall et al., 2023" in the version 1.0 CONUS dataset. Full documentation on version 1.1 of the AORC data and the related journal publication are provided below.

The native AORC version 1.1 process creates a dataset that consists of netCDF files with the following dimensions: 1 hour, 4201 latitude values (ranging from 25.0 to 53.0), and 8401 longitude values (ranging from -125.0 to -67).

The data creation runs with a 10-day lag to ensure the inclusion of any corrections to the input Stage IV and NLDAS data.

Note - The full extent of the AORC grid as defined in its data files exceed those cited above; those outermost rows and columns of data grids are filled with missing values and are the remnant of an early set of required AORC extents that have since been adjusted inward.

AORC Version 1.1 Zarr Conversion

The goal for converting the AORC data from netCDF to Zarr was to allow users to quickly and efficiently load/use the data. For example, one year of data takes 28 mins to load via NetCDF while only taking 3.2 seconds to load via Zarr (resulting in a substantial increase in speed). For longer periods of time, the percentage increase in speed using Zarr (vs NetCDF) is even higher. Using Zarr also leads to less memory and CPU utilization.

It was determined that the optimal conversion for the data was 1 year worth of Zarr files with a chunk size of 18MB. The chunking was completed across all 8 variables. The chunks consist of the following dimensions: 144 time, 128 latitude, and 256 longitude. To create the files in the Zarr format, the NetCDF files were rechunked using chunk() and "Xarray". After chunking the files, they were converted to a monthly Zarr file. Then, each monthly Zarr file was combined using "to_zarr" to create a Zarr file that represents a full year

Users wanting more than 1 year of data will be able to utilize Zarr utilities/libraries to combine multiple years up to the span of the full data set.

There are eight variables representing the meteorological conditions
Total Precipitaion (APCP_surface)

  1. Hourly total precipitation (kgm-2 or mm) for Calibration (AORC) dataset
Air Temperature (TMP_2maboveground)
  1. Temperature (at 2 m above-ground-level (AGL)) (K)
Specific Humidity (SPFH_2maboveground)
  1. Specific humidity (at 2 m AGL) (g g-1)
Downward Long-Wave Radiation Flux (DLWRF_surface)
  1. longwave (infrared)
  2. radiation flux (at the surface) (W m-2)
Downward Short-Wave Radiation Flux (DSWRF_surface)
  1. Downward shortwave (solar)
  2. radiation flux (at the surface) (W m-2)
Pressure (PRES_surface)
  1. Air pressure (at the surface) (Pa)
**U-Component of Wind (UGRD_10maboveground)"
1)U (west-east) - components of the wind (at 10 m AGL) (m s-1)
**V-Component of Wind (VGRD_10maboveground)"
  1. V (south-north) - components of the wind (at 10 m AGL) (m s-1)

Precipitation and Temperature

The gridded AORC precipitation dataset contains one-hour Accumulated Surface Precipitation (APCP) ending at the “top” of each hour, in liquid water-equivalent units (kg m-2 to the nearest 0.1 kg m-2), while the gridded AORC temperature dataset is comprised of instantaneous, 2 m above-ground-level (AGL) temperatures at the top of each hour (in Kelvin, to the nearest 0.1).

Specific Humidity, Pressure, Downward Radiation, Wind

...

Details →

Usage examples

See 2 usage examples →

NOAA Global Forecast System (GFS) netCDF Formatted Data

agricultureclimatedisaster responseenvironmentalmeteorologicalweather

The Global Forecast System (GFS) is a weather forecast model produced by the National Centers for Environmental Prediction (NCEP). Dozens of atmospheric and land-soil variables are available through this dataset, from temperatures, winds, and precipitation to soil moisture and atmospheric ozone concentration. The GFS data files stored here can be immediately used for OAR/ARL’s NOAA-EPA Atmosphere-Chemistry Coupler Cloud (NACC-Cloud) tool, and are in a Network Common Data Form (netCDF), which is a very common format used across the scientific community. These particular GFS files contain a comprehensive number of global atmosphere/land variables at a relatively high spatiotemporal resolution (approximately 13x13 km horizontal, vertical resolution of 127 levels, and hourly), are not only necessary for the NACC-Cloud tool to adequately drive community air quality applications (e.g., U.S. EPA’s Community Multiscale Air Quality model; https://www.epa.gov/cmaq), but can be very useful for a myriad of other applications in the Earth system modeling communities (e.g., atmosphere, hydrosphere, pedosphere, etc.). While many other data file and record formats are indeed available for Earth system and climate research (e.g., GRIB, HDF, GeoTIFF), the netCDF files here are advantageous to the larger community because of the comprehensive, high spatiotemporal information they contain, and because they are more scalable, appendable, shareable, self-describing, and community-friendly (i.e., many tools available to the community of users). Out of the four operational GFS forecast cycles per day (at 00Z, 06Z, 12Z and 18Z) this particular netCDF dataset is updated daily (/inputs/yyyymmdd/) for the 12Z cycle and includes 24-hr output for both 2D (gfs.t12z.sfcf$0hh.nc) and 3D variables (gfs.t12z.atmf$0hh.nc).

Also available are netCDF formatted Global Land Surface Datasets (GLSDs) developed by Hung et al. (2024). The GLSDs are based on numerous satellite products, and have been gridded to match the GFS spatial resolution (~13x13 km). These GLSDs contain vegetation canopy data (e.g., land surface type, vegetation clumping index, leaf area index, vegetative canopy height, and green vegetation fraction) that are supplemental to and can be combined with the GFS meteorological netCDF data for various applications, including NOAA-ARL's canopy-app. The canop...

Details →

Usage examples

See 2 usage examples →

NOAA Unified Forecast System Subseasonal to Seasonal Prototypes

agricultureclimatedisaster responseenvironmentalmeteorologicaloceansweather

The Unified Forecast System Subseasonal to Seasonal prototypes consist of reforecast data from the UFS atmosphere-ocean coupled model experimental prototype version 5, 6, 7, and 8 produced by the Medium Range and Subseasonal to Seasonal Application team of the UFS-R2O project. The UFS prototypes are the first dataset released to the broader weather community for analysis and feedback as part of the development of the next generation operational numerical weather prediction system from NWS. The datasets includes all the major weather variables for atmosphere, land, ocean, sea ice, and ocean wav...

Details →

Usage examples

See 2 usage examples →

Nighttime-Fire-Flare

anomaly detectionclassificationdisaster responseearth observationenvironmentalNASA SMD AIsatellite imagerysocioeconomicurban

Detection of nighttime combustion (fire and gas flaring) from daily top of atmosphere data from NASA's Black Marble VNP46A1 product using VIIRS Day/Night Band and VIIRS thermal bands.

Details →

Usage examples

See 2 usage examples →

Public Utility Data Liberation Project

climateclimate modelelectricityenergyenergy modelingenvironmentalgovernment recordsinfrastructureopen source softwareutilities

The Public Utility Data Liberation Project (PUDL) provides analysis-ready energy system data to climate advocates, researchers, policymakers, and journalists.

PUDL is an open source data processing pipeline that makes US energy data easier to access and use programmatically. Hundreds of gigabytes of valuable data are published by US government agencies, but it's often difficult to work with. PUDL takes the original spreadsheets, CSV files, and databases and turns them into a unified resource. This allows users to spend more time on novel analysis and less time on data preparation.

This...

Details →

Usage examples

See 2 usage examples →

RAPID NRT Flood Maps

agriculturedisaster responseearth observationenvironmentalwater

Near Real-time and archival data of High-resolution (10 m) flood inundation dataset over the Contiguous United States, developed based on the Sentinel-1 SAR imagery (2016-current) archive, using an automated Radar Produced Inundation Diary (RAPID) algorithm.

Details →

Usage examples

See 2 usage examples →

SeeFar V0

biodiversityclimatecoastalearth observationenvironmentalgeospatialglobalmachine learningmappingnatural resourcesatellite imagerysustainability

A collection of multi-resolution satellite images from both public and commercial satellites. The dataset is specifically curated for training geospatial foundation models.

Details →

Usage examples

See 2 usage examples →

Sentinel-1 SLC dataset for South and Southeast Asia, Taiwan, Korea and Japan

disaster responseearth observationenvironmentalgeospatialsatellite imagerysynthetic aperture radar

The S1 Single Look Complex (SLC) dataset contains Synthetic Aperture Radar (SAR) data in the C-Band wavelength. The SAR sensors are installed on a two-satellite (Sentinel-1A and Sentinel-1B) constellation orbiting the Earth with a combined revisit time of six days, operated by the European Space Agency. The S1 SLC data are a Level-1 product that collects radar amplitude and phase information in all-weather, day or night conditions, which is ideal for studying natural hazards and emergency response, land applications, oil spill monitoring, sea-ice conditions, and associated climate change effec...

Details →

Usage examples

See 2 usage examples →

Sub-Meter Canopy Tree Height of California in 2020 by CTrees.org

aerial imagerycogconservationdeep learningearth observationenvironmentalgeospatialimage processingland cover

Canopy Tree Height maps for California in 2020. Created using a deep learning model on very-high-resolution airborne imagery from the National Agriculture Imagery Program (NAIP) by United States Department of Agriculture (USDA).

Details →

Usage examples

See 2 usage examples →

Tropical Cyclone Precipitation, Infrared, Microwave, and Environmental Dataset (TC PRIMED)

atmosphereearth observationenvironmentalgeophysicsgeoscienceglobalmeteorologicalmodelnetcdfprecipitationsatellite imageryweather

The Tropical Cyclone Precipitation, Infrared, Microwave and Environmental Dataset (TC PRIMED) is a dataset centered around passive microwave observations of global tropical cyclones from low-Earth-orbiting satellites. TC PRIMED is a compilation of tropical cyclone data from various sources, including 1) tropical cyclone information from the National Oceanic and Atmospheric Administration (NOAA) National Weather Service National Hurricane Center (NHC) and Central Pacific Hurricane Center (CPHC) and the U.S. Department of Defense Joint Typhoon Warning Center, 2) low-Earth-orbiting satellite obse...

Details →

Usage examples

See 2 usage examples →

ARPA-E PERFORM Forecast data

energyenvironmentalgeospatialmodelsolar

The ARPA-E PERFORM Program is an ARPA-E funded program that aim to use time-coincident power and load seeks to develop innovative management systems that represent the relative delivery risk of each asset and balance the collective risk of all assets across the grid. A risk-driven paradigm allows operators to: (i) fully understand the true likelihood of maintaining a supply-demand balance and system reliability, (ii) optimally manage the system, and (iii) assess the true value of essential reliability services. This paradigm shift is critical for all power systems and is essential for grids wi...

Details →

Usage examples

See 1 usage example →

Analysis Ready Sentinel-1 Backscatter Imagery

agriculturecogdisaster responseearth observationenvironmentalgeospatialsatellite imagerystacsynthetic aperture radar

The Sentinel-1 mission is a constellation of C-band Synthetic Aperature Radar (SAR) satellites from the European Space Agency launched since 2014. These satellites collect observations of radar backscatter intensity day or night, regardless of the weather conditions, making them enormously valuable for environmental monitoring. These radar data have been processed from original Ground Range Detected (GRD) scenes into a Radiometrically Terrain Corrected, tiled product suitable for analysis. This product is available over the Contiguous United States (CONUS) since 2017 when Sentinel-1 data becam...

Details →

Usage examples

See 1 usage example →

Coupled Model Intercomparison Project Phase 5 (CMIP5) University of Wisconsin-Madison Probabilistic Downscaling Dataset

climatecoastaldisaster responseenvironmentalmeteorologicaloceanssustainabilitywaterweather

The University of Wisconsin Probabilistic Downscaling (UWPD) is a statistically downscaled dataset based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) climate models. UWPD consists of three variables, daily precipitation and maximum and minimum temperature. The spatial resolution is 0.1°x0.1° degree resolution for the United States and southern Canada east of the Rocky Mountains.

The downscaling methodology is not deterministic. Instead, to properly capture unexplained variability and extreme events, the methodology predicts a spatially and temporally varying Probability Density Function (PDF) for each variable. Statistics such as the mean, mean PDF and annual maximum statistics can be calculated directly from the daily PDF and these statistics are included in the dataset. In addition, “standard”, “raw” data is created by randomly sampling from the PDFs to create a “realization” of the local scale given the large-scale from the climate model. There are 3 realizations for temperature and 14 realizations for precipitation. ...

Details →

Usage examples

See 1 usage example →

NOAA Global Surface Summary of Day

agricultureclimateenvironmentalnatural resourceregulatoryweather

Global Surface Summary of the Day is derived from The Integrated Surface Hourly (ISH) dataset. The ISH dataset includes global data obtained from the USAF Climatology Center, located in the Federal Climate Complex with NCDC. The latest daily summary data are normally available 1-2 days after the date-time of the observations used in the daily summaries. The online data files begin with 1929 and are at the time of this writing at the Version 8 software level. Over 9000 stations' data are typically available. The daily elements included in the dataset (as available from each station) are:
Mean temperature (.1 Fahrenheit)
Mean dew point (.1 Fahrenheit)
Mean sea level pressure (.1 mb)
Mean station pressure (.1 mb)
Mean visibility (.1 miles)
Mean wind speed (.1 knots)
Maximum sustained wind speed (.1 knots)
Maximum wind gust (.1 knots)
Maximum temperature (.1 Fahrenheit)
Minimum temperature (.1 Fahrenheit)
Precipitation amount (.01 inches)
Snow depth (.1 inches)
Indicator for occurrence of: Fog, Rain or Drizzle, Snow or Ice Pellets, Hail, Thunder, Tornado/Funnel Cloud.

G
...

Details →

Usage examples

See 1 usage example →

NOAA National Water Model Short-Range Forecast

agricultureagricultureclimatedisaster responseenvironmentaltransportationweather

The National Water Model (NWM) is a water resources model that simulates and forecasts water budget variables, including snowpack, evapotranspiration, soil moisture and streamflow, over the entire continental United States (CONUS). The model, launched in August 2016, is designed to improve the ability of NOAA to meet the needs of its stakeholders (forecasters, emergency managers, reservoir operators, first responders, recreationists, farmers, barge operators, and ecosystem and floodplain managers) by providing expanded accuracy, detail, and frequency of water information. It is operated by NOA...

Details →

Usage examples

See 1 usage example →

NOAA's Coastal Ocean Reanalysis (CORA) Dataset

agricultureagricultureclimatedisaster responseenvironmentaloceanstransportationweather

NOAA's Coastal Ocean Reanalysis (CORA) for the Gulf of Mexico and East Coast (GEC) is produced using verified hourly water levels from the Center of Operational Oceanographic Products & Services (CO-OPS), through hydrodynamic modeling from Advanced Circulation "ADCIRC" and Simulating WAves Nearshore "SWAN" models. Data are assimilated, processed, corrected, and processed again before quality assurance and skill assessment with additional verified tide station-based observations.

Details for CORA Dataset

Timeseries - 1979 to 2022
Size - Approx. 20.5TB
Domain - Lat 5.8 to 45.8 ; Long -98.0 to -53.8
Nodes - 1813443 centroids, 3564104 elements
Grid cells - Currently apporximately 505
Spatial Resolution ...

Details →

Usage examples

See 1 usage example →

NOAA/PMEL Ocean Climate Stations Moorings

climateenvironmentaloceansweather

The mission of the Ocean Climate Stations (OCS) Project is to make meteorological and oceanic measurements from autonomous platforms. Calibrated, quality-controlled, and well-documented climatological measurements are available on the OCS webpage and the OceanSITES Global Data Assembly Centers (GDACs), with near-realtime data available prior to release of the complete, downloaded datasets.

OCS measurements served through the Big Data Program come from OCS high-latitude moored buoys located in the Kuroshio Extension (32°N 145°E) and the Gulf of Alaska (50°N 145°W). Initiated in 2004 and 20
...

Details →

Usage examples

See 1 usage example →

Orcasound - bioacoustic data for marine conservation

biodiversitybiologycoastalconservationdeep learningecosystemsenvironmentalgeospatiallabeledmachine learningmappingoceansopen source softwaresignal processing

Live-streamed and archived audio data (~2018-present) from underwater microphones (hydrophones) containing marine biological signals as well as ambient ocean noise. Hydrophone placement and passive acoustic monitoring effort prioritizes detection of orca sounds (calls, clicks, whistles) and potentially harmful noise. Geographic focus is on the US/Canada critical habitat of Southern Resident killer whales (northern CA to central BC) with initial focus on inland waters of WA. In addition to the raw lossy or lossless compressed data, we provide a growing archive of annotated bioacoustic bouts.

Details →

Usage examples

See 1 usage example →

Safecast

air qualityclimateenvironmentalgeospatialradiation

An ongoing collection of radiation and air quality measurements taken by devices involved in the Safecast project.

Details →

Usage examples

See 1 usage example →

Sentinel-1 SLC dataset for Germany

disaster responseearth observationenvironmentalgeospatialsatellite imagerysustainabilitysynthetic aperture radar

The Sentinel1 Single Look Complex (SLC) unzipped dataset contains Synthetic Aperture Radar (SAR) data from the European Space Agency’s Sentinel-1 mission. Different from the zipped data provided by ESA, this dataset allows direct access to individual swaths required for a given study area, thus drastically minimizing the storage and downloading time requirements of a project. Since the data is stored on S3, users can utilize the boto3 library and s3 get_object method to read the entire content of the object into the memory for processing, without actually having to download it. The Sentinel-1 ...

Details →

Usage examples

See 1 usage example →

(EXPERIMENTAL) NOAA FourCastNet Global Forecast System (FourCastNetGFS) (EXPERIMENTAL)

agricultureclimatedisaster responseenvironmentalmeteorologicalweather

The FourCastNet Global Forecast System (FourCastNetGFS) is an experimental system set up by the National Centers for Environmental Prediction (NCEP) to produce medium range global forecasts. The model runs on a 0.25 degree latitude-longitude grid (about 28 km) and 13 pressure levels. The model produces forecasts 4 times a day at 00Z, 06Z, 12Z and 18Z cycles. Major atmospheric and surface fields including temperature, wind components, geopotential height, relative humidity and 2 meter temperature and 10 meter winds are available. The products are 6 hourly forecasts up to 10 days. The data format is GRIB2.

The FourCastNetGFS system is an experimental weather forecast model built upon the pre-trained Nvidia’s FourCastNet Machine Learning Weather Prediction (MLWP) model version 2. The FourCastNet (Bonev et al, 2023) was developed by Nvidia using Adaptive Fourier Neural Operators. It uses a Fourier transform-based token-mixing scheme with the vision transformer architecture. This model is pre-trained with ECMWF’s ERA5 reanalysis data. The FourCastNetGFS takes one model state as initial condition from NCEP 0.25 degree GDAS analysis data and runs FourCastNet with weights from the pretrained FourCas
...

Details →

(EXPERIMENTAL) NOAA GraphCast Global Forecast System (GFS) (EXPERIMENTAL)

agricultureclimatedisaster responseenvironmentalmeteorologicalweather

The GraphCast Global Forecast System (GraphCastGFS) is an experimental system set up by the National Centers for Environmental Prediction (NCEP) to produce medium range global forecasts. The horizontal resolution is a 0.25 degree latitude-longitude grid (about 28 km). The model runs 4 times a day at 00Z, 06Z, 12Z and 18Z cycles. Major atmospheric and surface fields including temperature, wind components, geopotential height, specific humidity, and vertical velocity, are available. The products are 6 hourly forecasts up to 10 days. The data format is GRIB2.

The GraphCastGFS system is an experimental weather forecast model built upon the pre-trained Google DeepMind’s GraphCast Machine Learning Weather Prediction (MLWP) model. The GraphCast model is implemented as a message-passing graph neural network (GNN) architecture with “encoder-processor-decoder” configuration. It uses an icosahedron grid with multiscale edges and has around 37 million parameters. This model is pre-trained with ECMWF’s ERA5 reanalysis data. The GraphCastGFSl takes two model states as initial conditions (current and 6-hr previous states) from NCEP 0.25 degree GDAS analysis data and runs GraphCast (37 levels) and GraphCast_operational (13 levels) with a pre-trained model provided by GraphCast. Unit conversion to the GDAS data is conducted to match the input data required by GraphCast and to generate forecast products consistent with GFS from GraphCastGFS’ native forecast data.

The GraphCastGFS version 2 made the following changes from the GraphcastCastGFS version 1.

  1. The 37 vertical levels model is removed due to the storage restriction and limited accuracy.
  2. The 13 levels graphcast ML model was fine-tuned with NCEP’s GDAS data as inputs and ECMWF ERA5 data as ground truth from 20210323 to 20220901, validated from 20220901 to 20230101. Evaluation is done with forecasts from 20230101-20240101. The new weights created from the training are used to create global forecasts. It is important to note that the GraphCastGFS v1 model weights obtained from Google’s DeepMInd were provided based on 12 timesteps training with ERA5 data, while the GraphCastGFS v2 model weights resulted from training with 14 timesteps with GDAS and ERA5 data that significantly increased the accuracy of the forecasts compared with GraphCastGFS V1.

    The input data generated from the GDAS data as GraphCast input is provided under input/ directory. An example of file names is shown below

    source-gdas_date-2024022000_res-0.25_levels-13_steps-2.nc

    The files are under forecasts_13_levels/. There are 40 files under each directory covering a 10 day forecast. An example of file name is listed below

    graphcastgfs.t00z.pgrb2.0p25.f006

The GraphCastGFS version 2.1 change log:

  1. Starting from 06 cycle on 20240710, the forecast length is increased from 10 days to 16 days.

    Please note that th...

    Details →

EPA Dynamically Downscaled Ensemble (EDDE) Version 1

agricultureair qualityair temperatureatmosphereclimateclimate modelclimate projectionsCMIP5CMIP6ecosystemselevationenvironmentalEulerianeventsfloodsfluid dynamicsgeosciencegeospatialhdf5healthHPChydrologyinfrastructureland coverland usemeteorologicalmodelnear-surface air temperaturenear-surface relative humiditynear-surface specific humiditynetcdfopen source softwarephysicspost-processingprecipitationradiationsimulationsuswaterweather

The data are a subset of the EPA Dynamically Downscaled Ensemble (EDDE), Version 1. EDDE is a collection of physics-based modeled data that represent 3D atmospheric conditions for historical and future periods under different scenarios. The EDDE Version 1 datasets cover the contiguous United States at a horizontal grid spacing of 36 kilometers at hourly increments. EDDE Version 1 includes simulations that have been dynamically downscaled from multiple global climate models (GCMs) under both mid- and high-emission scenarios from the Fifth Coupled Model Intercomparison Project (CMIP5) using the...

Details →

EPA Dynamically Downscaled Ensemble (EDDE) Version 2

agricultureair qualityair temperatureatmosphereclimateclimate modelclimate projectionsCMIP5CMIP6ecosystemselevationenvironmentalEulerianeventsfloodsfluid dynamicsgeosciencegeospatialhdf5healthHPChydrologyinfrastructureland coverland usemeteorologicalmodelnear-surface air temperaturenear-surface relative humiditynear-surface specific humiditynetcdfopen source softwarephysicspost-processingprecipitationradiationsimulationsuswaterweather

The data are a subset of the EPA Dynamically Downscaled Ensemble (EDDE), Version 2. EDDE is a collection of physics-based modeled data that represent 3D atmospheric conditions for historical and future periods under different scenarios. The EDDE Version 2 datasets cover the contiguous United States at a horizontal grid spacing of 12 kilometers at hourly increments. EDDE Version 2 will include simulations that have been dynamically downscaled from multiple global climate models (GCMs) under multiple emission scenarios from the Sixth Coupled Model Intercomparison Project (CMIP6) using the Weath...

Details →

EPA Risk-Screening Environmental Indicators

environmental

Detailed air model results from EPA’s Risk-Screening Environmental Indicators (RSEI) model.

Details →

Grid Algorithms and Data Analytics Library (GADAL)

energyenvironmentalmodelsustainability

The aim of this project is to create an easy-to-use platform where various types of analytics can be performed on a wide range of electrical grid datasets. The aim is to establish an open-source library of algorithms that universities, national labs and other developers can contribute to which can be used on both open-source and proprietary grid data to improve the analysis of electrical distribution systems for the grid modeling community. OEDI Systems Integration (SI) is a grid algorithms and data analytics API created to standardize how data is sent between different modules that are run as...

Details →

Gulfwide Avian Colony Monitoring Survey Photos

biologyconservationecosystemsenvironmentallabeledobject detection

For this project, The Water Institute (the Institute) and subcontractor Colibri Ecological Consulting, LLC (Colibri) utilized established methods and protocols capable of assessing changes of colonial waterbird populations and their important habitats within individual states and the broader northern Gulf of Mexico region. Data collection activities included: Aerial Photographic Nest Surveys: Implementation of fixed-wing aircraft surveys intended to assess waterbird colonies and document associated nesting within select portions of the northern Gulf of Mexico. Additional detail is provide...

Details →

High Resolution Downscaled Climate Data for Southeast Alaska

agricultureclimatecoastalearth observationenvironmentalsustainabilityweather

This dataset contains historical and projected dynamically downscaled climate data for the Southeast region of the State of Alaska at 1 and 4km spatial resolution and hourly temporal resolution. Select variables are also summarized into daily resolutions. This data was produced using the Weather Research and Forecasting (WRF) model (Version 4.0). We downscaled both Climate Forecast System Reanalysis (CFSR) historical reanalysis data (1980-2019) and both historical and projected runs from two GCM’s from the Coupled Model Inter-comparison Project 5 (CMIP5): GFDL-CM3 and NCAR-CCSM4 (historical ru...

Details →

ISERV

earth observationenvironmentalgeospatialsatellite imagery

ISS SERVIR Environmental Research and Visualization System (ISERV) was a fully-automated prototype camera aboard the International Space Station that was tasked to capture high-resolution Earth imagery of specific locations at 3-7 frames per second. In the course of its regular operations during 2013 and 2014, ISERV's camera acquired images that can be used primaliry in use is environmental and disaster management.

Details →

NOAA / NGA Satellite Computed Bathymetry Assessment-SCuBA

agricultureagriculturebathymetryclimatedisaster responseenvironmentaloceanstransportationweather

One of the National Geospatial-Intelligence Agency’s (NGA) and the National Oceanic and Atmospheric Administration’s (NOAA) missions is to ensure the safety of navigation on the seas by maintaining the most current information and the highest quality services for U.S. and global transport networks. To achieve this mission, we need accurate coastal bathymetry over diverse environmental conditions. The SCuBA program focused on providing critical information to improve existing bathymetry resources and techniques with two specific objectives. The first objective was to validate National Aeronautics and Space Administration’s (NASA) Ice, Cloud and land Elevation SATellite-2 (ICESat-2), an Earth observing, space-based light detection and ranging (LiDAR) capability, as a useful bathymetry tool for nearshore bathymetry information in differing environmental conditions. Upon validating the ICESat-2 bathymetry retrievals relative to sea floor type, water clarity, and water surface dynamics, the next objective is to use ICESat-2 as a calibration tool to improve existing Satellite Derived Bathymetry (SDB) coastal bathymetry products with poor coastal depth information but superior spatial coverage. Current resources that monitor coastal bathymetry can have large vertical depth errors (up to 50 percent) in the nearshore region; however, derived results from ICESat-2 shows promising results for improving the accuracy of the bathymetry information in the nearshore region.

Project Overview
One of NGA’s and NOAA’s primary missions is to provide safety of navigation information. However, coastal depth information is still lacking in some regions—specifically, remote regions. In fact, it has been reported that 80 percent of the entire seafloor has not been mapped. Traditionally, airborne LiDARs and survey boats are used to map the seafloor, but in remote areas, we have to rely on satellite capabilities, which currently lack the vertical accuracy desired to support safety of navigation in shallow water. In 2018, NASA launched a space-based LiDAR system called ICESat-2 that has global coverage and a polar orbit originally designed to monitor the ice elevation in polar regions. Remarkably, because it has a green laser beam, ICESat-2 also happens to collect bathymetry information ICESat-2. With algorithm development provided by University of Texas (UT) Austin, NGA Research and Development (R&D) leveraged the ICESat-2 platform to generate SCuBA, an automated depth retrieval algorithm for accurate, global, refraction-corrected underwater depths from 0 m to 30 m, detailed in Figure 1 of the documentation. The key benefit of this product is the vertical depth accuracy of depth retrievals, which is ideal for a calibration tool. NGA and NOAA National Geodetic Survey (NGS), partnered to make this product available to the public for all US territories. ...

Details →

NOAA 3-D Surge and Tide Operational Forecast System for the Atlantic Basin (STOFS-3D-Atlantic)

climatecoastaldisaster responseenvironmentalglobalmarine navigationmeteorologicaloceanssustainabilitywaterweather

NOTICE - The Coast Survey Development Laboratory (CSDL) in NOAA/National Ocean Service (NOS)/Office of Coast Survey is upgrading the Surge and Tide Operational Forecast System (STOFS, formerly ESTOFS) to Version 2.1. A Service Change Notice (SCN) has been issued and can be found "HERE"

NOAA's Surge and Tide Operational Forecast System: Three-Dimensional Component for the Atlantic Basin (STOFS-3D-Atlantic). STOFS-3D-Atlantic runs daily (at 12 UTC) to provide users with 24-hour nowcasts (analyses of near present conditions) and up to 96-hour forecast guidance of water level conditions, and 2- and 3-dimensional fields of water temperature, salinity, and currents. The water level outputs represent the combined tidal and subtidal water surface elevations and are referenced to xGEOID20B

STOFS-3D-Atlantic has been developed to serve the marine navigation, weather forecasting, and disaster mitigation user communities. It is developed in a collaborative effort between the NOAA/National Ocean Service (NOS)/Office of Coast Survey, the NOAA/National Weather Service (NWS)/National Centers for Environmental Prediction (NCEP) Central Operations (NCO), and the Virginia Institute of Marine Science.

STOFS-3D-Atlantic employs the Semi-implicit Cross-scale Hydroscience Integrated System Model (SCHISM) as the hydrodynamic model core. Its unstructured grid consists of 2,926,236 nodes and 5,654,157 triangular or quadrilateral elements. Grid resolution is 1.5-2 km near the shoreline, ~600 m for the floodplain, down to 8 m for watershed rivers (at least 3 nodes across each river cross-section), and around 2-10 m for levees. Along the U.S. coastline, the land boundary of the domain aligns with the 10-m contour above xGEOID20B, encompassing the coastal transitional zone most vulnerable to coastal and inland flooding.

STOFS-3D-Atlantic makes uses of outputs from the National Water Model (NWM) to include inland hydrology and extreme precipitation effects on coastal flooding; forecast guidance from the NCEP Global Forecast System (GFS) and High-Resolution Rapid Refresh (HRRR) model as the surface meteorological forci...

Details →

NOAA Cloud Optimized Zarr Reference Files (Kerchunk)

climatecoastaldisaster responseenvironmentalmeteorologicaloceanswaterweather

This repository contains references to datasets published to the NOAA Open Data Dissemination Program. These reference datasets serve as index files to the original data by mapping to the Zarr V2 specification. When multidimensional model output is read through zarr, data can be lazily loaded (i.e. retrieving only the data chunks needed for processing) and data reads can be scaled horizontally to optimize object storage read performance.

The process used to optimize the data is called kerchunk. RPS runs the workflow in their AWS cloud environment every time a new data notification is received from a relevant source data bucket.

These are the current datasets being cloud-optimized. Refer to those pages for file naming conventions and other information regarding the specific model implementations:
NOAA Operational Forecast System (OFS)

NOAA Global Real-Time Ocean Forecast System (Global RTOFS)

NOAA National Water Model Short-Range Forecast

Filenames follow the source dataset’s conventions. For example, if the source file is
nos.dbofs.fields.f024.20240527.t00z.nc

Then the cloud-optimized filename is the same, with “.zarr” appended
nos.dbofs.fields.f024.20240527.t00z.nc.zarr

Data Aggregations
We also produce virtual aggregations to group an entire forecast model run, and the “best” available forecast.
Best Forecast (continuously updated) - nos.dbofs.fields.best.nc.zarr Full Model Run - nos.dbofs.fields.forecast.[YYYYMMDD].t[CC]z.nc.zarr

  • CC is the model run cycles, 00, 06, 12, 18 , or 03, 09, 15, 21 for nowcast and forecast runs
  • YYYY = year, MM = month, DD = day

    Cloud o...

    Details →

NOAA Global Data Assimilation (DA) Test Data

agricultureclimatedisaster responseenvironmentalmeteorologicalweather

The Unified Forecast System (UFS) is a community-based, coupled, comprehensive Earth Modeling System. It supports multiple applications with different forecast durations and spatial domains. The Global Data Assimilation System (GDAS) Application (App) is being used as the basis for uniting the Global Workflow and Global Forecast System (GFS) model with Joint Effort for Data assimilation Integration (JEDI) capabilities.

The National Centers for Environmental Prediction (NCEP) use GDAS to interpolate data from various observing systems and instruments onto a three-dimensional grid. GDAS obtain...

Details →

NOAA Global Real-Time Ocean Forecast System (Global RTOFS)

climatecoastaldisaster responseenvironmentalglobalmeteorologicaloceanswaterweather

NOAA is soliciting public comment on petential changes to the Real Time Ocean Forecast System (RTOFS) through March 27, 2024. Please see Public Notice at (https://www.weather.gov/media/notification/pdf_2023_24/pns24-12_rtofs_v2.4.0.pdf)

NOAA's Global Real-Time Ocean Forecast System (Global RTOFS) provides users with nowcasts (analyses of near present conditions) and forecast guidance up to eight days of ocean temperature and salinity, water velocity, sea surface elevation, sea ice coverage and sea ice thickness.

The Global Operational Real-Time Ocean Forecast System (Global RTOFS) is based on an eddy resolving 1/12° global HYCOM (HYbrid Coordinates Ocean Model) (https://www.hycom.org/), which is coupled to the Community Ice CodE (CICE) Version 4 (https://www.arcus.org/witness-the-arctic/2018/5/highlight/1). The RTOFS grid has a 1/12 degree horizontal resolution and 41 hybrid vertical levels on a global tripolar grid.

Since 2020, the RTOFS system implements a multivariate, multi-scale 3DVar data assimilation algorithm (Cummings and Smedstad, 2014) using a 24-hour update cycle. The data types presently assimilated include

(1) satellite Sea Surface Temperature (SST) from METOP-B, JPSS-VIIRS, and in-Situ SST, from ships, fixed and drifting buoys
(2) Sea Surface Salinity (SSS) from SMAP, SMOS, and buoys
(3) profiles of Temperature and Salinity from Animal-borne, Alamo floats, Argo floats, CTD, fixed buoys, gliders, TESAC, and XBT
(4) Absolute Dynamic Topography (ADT) from Altika, Cryosat, Jason-3, Sentinel 3a, 3b, 6a
(5) sea ice concentration from SSMI/S, AMSR2

The system is designed to incorporate new observing systems as the data becomes available.

Once the observations go through a fully automated quality control and thinning process, the increments, or corrections, are obtained by executing the 3D variational algorithm. The increments are then added to the 24-hours forecast fields using a 6-hourly incremental analysis update. An earlier version of the system is described in Garraffo et al (2020).

Garraffo, Z.D., J.A. Cummings, S. Paturi, Y. Hao, D. Iredell, T. Spindler, B. Balasubramanian, I. Rivin, H-C. Kim, A. Mehra, 2020. Real Time Ocean-Sea Ice Coupled Three Dimensional Variational Global Data Assimilative Ocean Forecast System. In Research Activities in Earth System Modeling, edited by E. Astakhova, WMO, World Climate Research Program Report No.6, July 2020.

Cummings, J. A. and O. M. Smedstad. 2013. Variational Data Assimilation for the Global Ocean. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol II) S. Park and L. Xu (eds), Springer, Chapter 13, 303-343.

Global...

Details →

NOAA Global Surge and Tide Operational Forecast System 2-D (STOFS-2D-Global)

climatecoastaldisaster responseenvironmentalglobalmeteorologicaloceanswaterweather

NOTICE - The Coast Survey Development Laboratory (CSDL) in NOAA/National Ocean Service (NOS)/Office of Coast Survey has upgraded the Surge and Tide Operational Forecast System (STOFS, formerly ESTOFS) to Version 2.1. A Service Change Notice (SCN) has been issued and can be found "HERE"

NOAA's Global Surge and Tide Operational Forecast System 2-D (STOFS-2D-Global) provides users with nowcasts (analyses of near present conditions) and forecast guidance of water level conditions for the entire globe. STOFS-2D-Global has been developed to serve the marine navigation, weather forecasting, and disaster mitigation user communities. STOFS-2D-Global was developed in a collaborative effort between the NOAA/National Ocean Service (NOS)/Office of Coast Survey, the NOAA/National Weather Service (NWS)/National Centers for Environmental Prediction (NCEP) Central Operations (NCO), the University of Notre Dame, the University of North Carolina, and The Water Institute of the Gulf. The model generates forecasts out to 180 hours four times per day; forecast output includes water levels caused by the combined effects of storm surge and tides, by astronomical tides alone, and by sub-tidal water levels (isolated storm surge).

The hydrodynamic model employed by STOFS-2D-Global is the ADvanced CIRCulation (ADCIRC) finite element model. The model is forced by GFS winds, mean sea level pressure, and sea ice. The unstructured grid used by STOFS-2D-Global consists of 12,785,004 nodes and 24,875,336 triangular elements. Coastal res...

Details →

NOAA Unified Forecast System (UFS) Hierarchical Testing Framework (HTF)

agricultureclimatedisaster responseenvironmentalmeteorologicaloceansweather

The "Unified Forecast System" (UFS) is a community-based, coupled, comprehensive Earth Modeling System. The Hierarchical Testing Framework (HTF) serves as a comprehensive toolkit designed to enhance the testing capabilities within UFS "repositories". It aims to standardize and simplify the testing process across various "UFS Weather Model" (WM) components and associated modules, aligning with the Hierarchical System Development (HSD) approach and NOAA baseline operational metrics.

The HTF provides a structured methodology for test case design and execution, which enhances code management practices, fosters user accessibility, and promotes adherence to established testing protocols. It enables developers to conduct testing efficiently and consistently, ensuring code integrity and reliability through the use of established technologies such as CMake and CTest. When integrated with containerization techniques, the HTF facilitates portability of test cases and promotes reproducibility across different computing environments. This approach reduces the computational overhead and enhances collaboration within the UFS community by providing a unified testing framework.

Acknowledgment - The Unified Forecast System (UFS) atmosphere-ocean coupled model...

Details →

VENUS L2A Cloud-Optimized GeoTIFFs

activity detectionagriculturecogdisaster responseearth observationenvironmentalgeospatialimage processingland covernatural resourcesatellite imagerystac

The Venµs science mission is a joint research mission undertaken by CNES and ISA, the Israel Space Agency. It aims to demonstrate the effectiveness of high-resolution multi-temporal observation optimised through Copernicus, the global environmental and security monitoring programme. Venµs was launched from the Centre Spatial Guyanais by a VEGA rocket, during the night from 2017, August 1st to 2nd. Thanks to its multispectral camera (12 spectral bands in the visible and near-infrared ranges, with spectral characteristics provided here), it acquires imagery every 1-2 days over 100+ areas at...

Details →

Digital Earth Pacific Mangroves Extent and Density

climateearth observationenvironmentalgeosciencegeospatial

Pacific Mangroves beta version product is an extension of the Global Mangrove Watch (GMV v3, 2020). which shows the extent of mangrove ecosystems across Pacific Island Countries and Territories (PICTs). The changes in mangroves extent was further classified into three categories of closed (high-density), open (lower density) and non-mangrove. This was used as the baseline training layer where mangrove categories between 2016 and 2022 were analysed.

Details →

Usage examples

See 2 usage examples →

Digital Earth Pacific Water Observatins from Space (WOfS)

earth observationenvironmentalgeosciencegeospatialwater

Water Observations from Space (WOfS) beta version product for Water Observations from Space (WOfS) is an annual summary of the temporal and spatial extent of surface water over landscapes. In essence, this highlights where water is usually or where it is rarely. The results are visualised to compare points in time spanning over a year, a season or multiple years. The dataset extends back historically to 2013.

Details →

Usage examples

See 2 usage examples →

Pacific Coastlines Change

coastalearth observationenvironmentalgeosciencegeospatial

Pacific Coastlines beta version product includes coastline change detection since the year 2000 for Pacific Island Country and Territories (PICTs). This product will provide ongoing monitoring of coastline change detection. This provides insights into processes including erosion (where landmass area decreases) and accretion or deposition (where landmass area increases).

Details →

Usage examples

See 2 usage examples →

SatPM2.5

air qualityatmosphereenvironmentalhealthnetcdf

Fine particulate matter (PM2.5) concentrations are estimated using information from satellite-, simulation- and monitor-based sources. Aerosol optical depth from multiple satellites (MODIS, VIIRS, MISR, SeaWiFS, and VIIRS) and their respective retrievals (Dark Target, Deep Blue, MAIAC) is combined with simulation (GEOS-Chem) based upon their relative uncertainties as determined using ground-based sun photometer (AERONET) observations to produce geophysical estimates that explain most of the variance in ground-based PM2.5 measurements. A subsequent statistical fusion incorporates additional inf...

Details →

Usage examples

See 2 usage examples →

Sentinel-1 Mean and Median Annual Mosaic

climateearth observationenvironmentalgeosciencegeospatial

Sentinel-1 carries a Synthetic Aperture RADAR (SAR) that operates on the C-band. This platform offers SAR data day and night and in all-weather conditions.

Details →

Usage examples

See 2 usage examples →

IGP Coal Plant

air qualityenergyenvironmentalmeteorological

This dataset includes detailed information about coal power plants, their locations, capacities, emissions, and other relevant attributes around the Indian Gangetic Plain.

Details →

Usage examples

See 1 usage example →

AI Weather Prediction (AIWP) Model Reforecasts

environmentalmeteorologicalweather



This is an archive of pure AI-based weather prediction reforecasts produced collaboratively between the Cooperative Institute for Research in the Atmosphere (CIRA) and the NOAA Global Systems Laboratory (NOAA-GSL).

Currently, FourCastNetv2-small, Pangu-Weather, and GraphCast are included, with more models to come. Each of these models has been initialized with both NOAA GFS (directories with no extension) and ECMWF IFS initial conditions (directories ending in "_IFS"). The datasets are updated with near-real-time data twice per day (00Z and 12Z initializations).
...

Details →