This registry exists to help people discover and share datasets that are available via AWS resources. See recent additions and learn more about sharing data on AWS.
See all usage examples for datasets listed in this registry tagged with natural resource.
You are currently viewing a subset of data tagged with natural resource.
If you want to add a dataset or example of how to use a dataset to this registry, please follow the instructions on the Registry of Open Data on AWS GitHub repository.
Unless specifically stated in the applicable dataset documentation, datasets available through the Registry of Open Data on AWS are not provided and maintained by AWS. Datasets are provided and maintained by a variety of third parties under a variety of licenses. Please check dataset licenses and related documentation to determine if a dataset may be used for your application.
If you have a project using a listed dataset, please tell us about it. We may work with you to feature your project in a blog post.
agriculturedisaster responseearth observationgeospatialnatural resourcesatellite imagerystac
The Sentinel-2 mission is a land monitoring constellation of two satellites that provide high resolution optical imagery and provide continuity for the current SPOT and Landsat missions. The mission provides a global coverage of the Earth's land surface every 5 days, making the data of great use in on-going studies. L1C data are available from June 2015 globally. L2A data are available from November 2016 over Europe region and globally since January 2017.
agriculturecogdisaster responseearth observationgeospatialnatural resourcesatellite imagerystac
This joint NASA/USGS program provides the longest continuous space-based record of
Earth’s land in existence. Every day, Landsat satellites provide essential information
to help land managers and policy makers make wise decisions about our resources and our environment.
Data is provided for Landsats 1, 2, 3, 4, 5, 7, 8, and 9 (excludes Landsat 6).As of June 28, 2023 (announcement),
the previous single SNS topic arn:aws:sns:us-west-2:673253540267:public-c2-notify
was replaced with
three new SNS topics for different types of scenes.
agriculturecogdisaster responseearth observationgeospatialnatural resourcesatellite imagerystac
The Sentinel-2 mission is a land monitoring constellation of two satellites that provide high resolution optical imagery and provide continuity for the current SPOT and Landsat missions. The mission provides a global coverage of the Earth's land surface every 5 days, making the data of great use in ongoing studies. This dataset is the same as the Sentinel-2 dataset, except the JP2K files were converted into Cloud-Optimized GeoTIFFs (COGs). Additionally, SpatioTemporal Asset Catalog metadata has were in a JSON file alongside the data, and a STAC API called Earth-search is freely available t...
agricultureearth observationmeteorologicalnatural resourceweather
Real-time and archival data from the Next Generation Weather Radar (NEXRAD) network.
agriculturecogdisaster responseearth observationgeospatialland coverland usemachine learningmappingnatural resourcesatellite imagerystacsustainabilitysynthetic aperture radar
The European Space Agency (ESA) WorldCover product provides global land cover maps for 2020 & 2021 at 10 m resolution based on Copernicus Sentinel-1 and Sentinel-2 data. The WorldCover product comes with 11 land cover classes and has been generated in the framework of the ESA WorldCover project, part of the 5th Earth Observation Envelope Programme (EOEP-5) of the European Space Agency. A first version of the product (v100), containing the 2020 map was released in October 2021. The 2021 map was released in October 2022 using an improved algorithm (v200). The WorldCover 2020 and 2021 maps we...
coastalcogdeafricaearth observationgeospatialland covernatural resourcesatellite imagerystacsustainability
The Global Mangrove Watch (GMW) dataset is a result of the collaboration between Aberystwyth University (U.K.), solo Earth Observation (soloEO; Japan), Wetlands International the World Conservation Monitoring Centre (UNEP-WCMC) and the Japan Aerospace Exploration Agency (JAXA). The primary objective of producing this dataset is to provide countries lacking a national mangrove monitoring system with first cut mangrove extent and change maps, to help safeguard against further mangrove forest loss and degradation. The Global Mangrove Watch dataset (version 2) consists of a global baseline map of ...
agriculturecogdeafricadisaster responseearth observationgeospatialnatural resourcesatellite imagerystac
Digital Earth Africa (DE Africa) provides free and open access to a copy of Landsat Collection 2 Level-2 products over Africa. These products are produced and provided by the United States Geological Survey (USGS). The Landsat series of Earth Observation satellites, jointly led by USGS and NASA, have been continuously acquiring images of the Earth’s land surface since 1972. DE Africa provides data from Landsat 5, 7 and 8 satellites, including historical observations dating back to late 1980s and regularly updated new acquisitions. New Level-2 Landsat 7 and Landsat 8 data are available after 15...
agriculturecogdeafricadisaster responseearth observationgeospatialnatural resourcesatellite imagerystac
GeoMAD is the Digital Earth Africa (DE Africa) surface reflectance geomedian and triple Median Absolute Deviation data service. It is a cloud-free composite of satellite data compiled over specific timeframes. The geomedian component combines measurements collected over the specified timeframe to produce one representative, multispectral measurement for every pixel unit of the African continent. The end result is a comprehensive dataset that can be used to generate true-colour images for visual inspection of anthropogenic or natural landmarks. The full spectral dataset can be used to develop m...
agriculturecogdeafricadisaster responseearth observationgeospatialnatural resourcesatellite imagerystacwater
Water Observations from Space (WOfS) is a service that draws on satellite imagery to provide historical surface water observations of the whole African continent. WOfS allows users to understand the location and movement of inland and coastal water present in the African landscape. It shows where water is usually present; where it is seldom observed; and where inundation of the surface has been observed by satellite. They are generated using the WOfS classification algorithm on Landsat satellite data. There are several WOfS products available for the African continent including scene-level dat...
aerial imagerycoastalcomputer visiondisaster responseearth observationearthquakesgeospatialimage processingimaginginfrastructurelandmachine learningmappingnatural resourceseismologytransportationurbanwater
The Low Altitude Disaster Imagery (LADI) Dataset consists of human and machine annotated airborne images collected by the Civil Air Patrol in support of various disaster responses from 2015-2023. Two key distinctions are the low altitude, oblique perspective of the imagery and disaster-related features, which are rarely featured in computer vision benchmarks and datasets.
agriculturecogdeafricadisaster responseearth observationgeospatialnatural resourcesatellite imagerystacsynthetic aperture radar
DE Africa’s Sentinel-1 backscatter product is developed to be compliant with the CEOS Analysis Ready Data for Land (CARD4L) specifications. The Sentinel-1 mission, composed of a constellation of two C-band Synthetic Aperture Radar (SAR) satellites, are operated by European Space Agency (ESA) as part of the Copernicus Programme. The mission currently collects data every 12 days over Africa at a spatial resolution of approximately 20 m. Radar backscatter measures the amount of microwave radiation reflected back to the sensor from the ground surface. This measurement is sensitive to surface rough...
agriculturecogdeafricadisaster responseearth observationgeospatialnatural resourcesatellite imagerystac
The Sentinel-2 mission is part of the European Union Copernicus programme for Earth observations. Sentinel-2 consists of twin satellites, Sentinel-2A (launched 23 June 2015) and Sentinel-2B (launched 7 March 2017). The two satellites have the same orbit, but 180° apart for optimal coverage and data delivery. Their combined data is used in the Digital Earth Africa Sentinel-2 product. Together, they cover all Earth’s land surfaces, large islands, inland and coastal waters every 3-5 days. Sentinel-2 data is tiered by level of pre-processing. Level-0, Level-1A and Level-1B data contain raw data fr...
climateearth observationenvironmentalnatural resourceoceanssatellite imagerywaterweather
A global, gap-free, gridded, daily 1 km Sea Surface Temperature (SST) dataset created by merging multiple Level-2 satellite SST datasets. Those input datasets include the NASA Advanced Microwave Scanning Radiometer-EOS (AMSR-E), the JAXA Advanced Microwave Scanning Radiometer 2 (AMSR-2) on GCOM-W1, the Moderate Resolution Imaging Spectroradiometers (MODIS) on the NASA Aqua and Terra platforms, the US Navy microwave WindSat radiometer, the Advanced Very High Resolution Radiometer (AVHRR) on several NOAA satellites, and in situ SST observations from the NOAA iQuam project. Data are available fro...
agriculturecogdeafricadisaster responseearth observationgeospatialnatural resourcesatellite imagerystacsynthetic aperture radar
The ALOS/PALSAR annual mosaic is a global 25 m resolution dataset that combines data from many images captured by JAXA’s PALSAR and PALSAR-2 sensors on ALOS-1 and ALOS-2 satellites respectively. This product contains radar measurement in L-band and in HH and HV polarizations. It has a spatial resolution of 25 m and is available annually for 2007 to 2010 (ALOS/PALSAR) and 2015 to 2020 (ALOS-2/PALSAR-2). The JERS annual mosaic is generated from images acquired by the SAR sensor on the Japanese Earth Resources Satellite-1 (JERS-1) satellite. This product contains radar measurement in L-band and H...
agriculturecogdeafricadisaster responseearth observationgeospatialnatural resourcesatellite imagerystacsustainability
Fractional cover (FC) describes the landscape in terms of coverage by green vegetation, non-green vegetation (including deciduous trees during autumn, dry grass, etc.) and bare soil. It provides insight into how areas of dry vegetation and/or bare soil and green vegetation are changing over time. The product is derived from Landsat satellite data, using an algorithm developed by the Joint Remote Sensing Research Program. Digital Earth Africa's FC service has two components. Fractional Cover is estimated from each Landsat scene, providing measurements from individual days. Fractional Cover...
agriculturecogdeafricadisaster responseearth observationgeospatialnatural resourcesatellite imagerystac
Digital Earth Africa’s Monthly NDVI Anomaly service provides estimate of vegetation condition, for each caldendar month, against the long-term baseline condition measured for the month from 1984 to 2020 in the NDVI Climatology. A standardised anomaly is calculated by subtracting the long-term mean from an observation of interest and then dividing the result by the long-term standard deviation. Positive NDVI anomaly values indicate vegetation is greener than average conditions, and are usually due to increased rainfall in a region. Negative values indicate additional plant stress relative to t...
agricultureagriculturecogdeafricadisaster responseearth observationgeospatialnatural resourcesatellite imagerystac
Digital Earth Africa’s NDVI climatology product represents the long-term average baseline condition of vegetation for every Landsat pixel over the African continent. Both mean and standard deviation NDVI climatologies are available for each calender month.Some key features of the product are:
climateCMIP5natural resourcesustainability
A collection of downscaled climate change projections, derived from the General Circulation Model (GCM) runs conducted under the Coupled Model Intercomparison Project Phase 5 (CMIP5) [Taylor et al. 2012] and across the four greenhouse gas emissions scenarios known as Representative Concentration Pathways (RCPs) [Meinshausen et al. 2011]. The NASA Earth Exchange group maintains the NEX-DCP30 (CMIP5), NEX-GDDP (CMIP5), and LOCA (CMIP5).
cogearth observationgeospatialminingnatural resourcesatellite imagerysustainability
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Level 1 Precision Terrain Corrected Registered At-Sensor Radiance (AST_L1T) data contains calibrated at-sensor radiance, which corresponds with the ASTER Level 1B (AST_L1B), that has been geometrically corrected, and rotated to a north-up UTM projection. The AST_L1T is created from a single resampling of the corresponding ASTER L1A (AST_L1A) product.The precision terrain correction process incorporates GLS2000 digital elevation data with derived ground control points (GCPs) to achieve topographic accuracy for all daytim...
agriculturecogdeafricadisaster responseearth observationgeospatialnatural resourcesatellite imagerystacwater
The Digital Earth Africa continental Waterbodies Monitoring Service identifies more than 700,000 water bodies from over three decades of satellite observations. This service maps persistent and seasonal water bodies and the change in their water surface area over time. Mapped water bodies may include, but are not limited to, lakes, ponds, man-made reservoirs, wetlands, and segments of some river systems.On a local, regional, and continental scale, this service helps improve our understanding of surface water dynamics and water availability and can be used for monitoring water bodies such as we...
agriculturecogdisaster responseearth observationgeospatialland coverland usemachine learningmappingnatural resourcesatellite imagerystacsustainabilitysynthetic aperture radar
The WorldCover 10m Annual Composites were produced, as part of the European Space Agency (ESA) WorldCover project, from the yearly Copernicus Sentinel-1 and Sentinel-2 archives for both years 2020 and 2021. These global mosaics consists of four products composites. A Sentinel-2 RGBNIR yearly median composite for bands B02, B03, B04, B08. A Sentinel-2 SWIR yearly median composite for bands B11 and B12. A Sentinel-2 NDVI yearly percentiles composite (NDVI 90th, NDVI 50th NDVI 10th percentiles). A Sentinel-1 GAMMA0 yearly median composite for bands VV, VH and VH/VV (power scaled). Each product is...
agriculturecogearth observationearthquakesecosystemsenvironmentalgeologygeophysicsgeospatialglobalinfrastructuremappingnatural resourcesatellite imagerysynthetic aperture radarurban
This data set is the first-of-its-kind spatial representation of multi-seasonal, global SAR repeat-pass interferometric coherence and backscatter signatures. Global coverage comprises all land masses and ice sheets from 82 degrees northern to 79 degrees southern latitude. The data set is derived from high-resolution multi-temporal repeat-pass interferometric processing of about 205,000 Sentinel-1 Single-Look-Complex data acquired in Interferometric Wide-Swath mode (Sentinel-1 IW mode) from 1-Dec-2019 to 30-Nov-2020. The data set was developed by Earth Big Data LLC and Gamma Remote Sensing AG, under contract for NASA's Jet Propulsion Laboratory. ...
agricultureearth observationmeteorologicalnatural resourceweather
Historical and one-day delay data from the IDEAM radar network.
aerial imageryagriculturecogearth observationgeospatialnatural resourceregulatory
The National Agriculture Imagery Program (NAIP) acquires aerial imagery during the agricultural growing seasons in the continental U.S. This "leaf-on" imagery andtypically ranges from 30 centimeters to 100 centimeters in resolution and is available from the naip-analytic Amazon S3 bucket as 4-band (RGB + NIR) imagery in MRF format, on naip-source Amazon S3 bucket as 4-band (RGB + NIR) in uncompressed Raw GeoTiff format and naip-visualization as 3-band (RGB) Cloud Optimized GeoTiff format. More details on NAIP
agriculturecogearth observationgeospatialmachine learningnatural resourcesatellite imagery
Sentinel-2 L2A 120m mosaic is a derived product, which contains best pixel values for 10-daily periods, modelled by removing the cloudy pixels and then performing interpolation among remaining values. As there are some parts of the world, which have lengthy cloudy periods, clouds might be remaining in some parts. The actual modelling script is available here.
aerial imageryagriculturecogearth observationgeospatialimagingmappingnatural resourcesustainability
The State of Indiana Geographic Information Office and IOT Office of Technology manage a series of digital orthophotography dating back to 2005. Every year's worth of imagery is available as Cloud Optimized GeoTIFF (COG) files, original GeoTIFF, and other compressed deliverables such as ECW and MrSID. Additionally, each imagery year is organized into a tile grid scheme covering the entire geography of Indiana. All years of imagery are tiled from a 5,000 ft grid or sub tiles depending upon the resolution of the imagery. The naming of the tiles reflects the lower left coordinate from the...
agricultureearth observationgeospatialimaginglidarmappingnatural resourcesustainability
The State of Indiana Geographic Information Office and IOT Office of Technology manage a series of digital LiDAR LAS files stored in AWS, dating back to the 2011-2013 collection and including the NRCS-funded 2016-2020 collection. These LiDAR datasets are available as uncompressed LAS files, for cloud storage and access. Each year's data is organized into a tile grid scheme covering the entire geography of Indiana, ensuring easy access and efficient processing. The tiles' naming reflects each tile's lower left coordinate, facilitating accurate data management and retrieval. The AWS ...
cogearth observationgeospatialnatural resourcesatellite imagerywater
Aquatic reflectance produced with the dark spectrum fitting (DSF) algorithm as implemented in the Atmospheric Correction for OLI “lite” (ACOLITE) software (version 20221114.0). Aquatic reflectance is defined here as unitless water-leaving radiance reflectance and represents the ratio of water-leaving radiance (units of watts per square meter per steradian per nanometer) to downwelling irradiance (units of watts per square meter per nanometer) multiplied by pi.
agriculturecogdeafricadisaster responseearth observationgeospatialnatural resourcesatellite imagerystacsustainabilitysynthetic aperture radar
JAXA has responded to the Earthquake events in Turkey and Syria by conducting emergency disaster observations and providing data as requested by the Disaster and Emergency Management Authority (AFAD), Ministry of Interior in Turkey, through Sentinel Asia and the International Disaster Charter. Additional information on the event and dataset can be found here. The 25 m PALSAR-2 ScanSAR is normalized backscatter data of PALSAR-2 broad area observation mode with observation width of 350 km. Polarization data are stored as 16-bit digital numbers (DN). The DN values can be converted to gamma naught...
biodiversityclimatecoastalearth observationenvironmentalgeospatialglobalmachine learningmappingnatural resourcesatellite imagerysustainability
A collection of multi-resolution satellite images from both public and commercial satellites. The dataset is specifically curated for training geospatial foundation models.
biodiversitybiologyecosystemsgeospatiallandlife sciencesnatural resourcesurvey
Archival soundscapes recorded in the rainforest landscapes of Central Africa, with a focus on the vocalizations of African forest elephants (Loxodonta cyclotis).
agriculturedisaster responsegeospatialnatural resourcesatellite imagery
Data from the Moderate Resolution Imaging Spectroradiometer (MODIS), managed by the U.S. Geological Survey and NASA. Five products are included: MCD43A4 (MODIS/Terra and Aqua Nadir BRDF-Adjusted Reflectance Daily L3 Global 500 m SIN Grid), MOD11A1 (MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 1 km SIN Grid), MYD11A1 (MODIS/Aqua Land Surface Temperature/Emissivity Daily L3 Global 1 km SIN Grid), MOD13A1 (MODIS/Terra Vegetation Indices 16-Day L3 Global 500 m SIN Grid), and MYD13A1 (MODIS/Aqua Vegetation Indices 16-Day L3 Global 500 m SIN Grid). MCD43A4 has global coverage, all...
agricultureclimateenvironmentalnatural resourceregulatoryweather
Global Surface Summary of the Day is derived from The Integrated Surface Hourly (ISH) dataset. The ISH dataset includes global data obtained from the USAF Climatology Center, located in the Federal Climate Complex with NCDC. The latest daily summary data are normally available 1-2 days after the date-time of the observations used in the daily summaries. The online data files begin with 1929 and are at the time of this writing at the Version 8 software level. Over 9000 stations' data are typically available. The daily elements included in the dataset (as available from each station) are:
Mean temperature (.1 Fahrenheit)
Mean dew point (.1 Fahrenheit)
Mean sea level pressure (.1 mb)
Mean station pressure (.1 mb)
Mean visibility (.1 miles)
Mean wind speed (.1 knots)
Maximum sustained wind speed (.1 knots)
Maximum wind gust (.1 knots)
Maximum temperature (.1 Fahrenheit)
Minimum temperature (.1 Fahrenheit)
Precipitation amount (.01 inches)
Snow depth (.1 inches)
Indicator for occurrence of: Fog, Rain or Drizzle, Snow or Ice Pellets, Hail, Thunder, Tornado/Funnel Cloud.
G...
agricultureearth observationmeteorologicalnatural resourcesustainabilityweather
The Multi-Year Reanalysis of Remotely Sensed Storms (MYRORSS) consists of radar reflectivity data run through the Multi-Radar, Multi-Sensor (MRMS) framework to create a three-dimensional radar volume on a quasi-Cartesian latitude-longitude grid across the entire contiguous United States. The radar reflectivity grid is also combined with hourly forecast model analyses to produce derived products such as echo top heights and hail size estimates. Radar Doppler velocity data was also processed into two azimuthal shear layer products. The source radar data was from the NEXRAD Level-II archive and the model analyses came from NOAA's Rapid Update Cycle model. Radar reflectivity was quality controlled to remove non-weather echoes and the data set was manually quality contolled to remove errors as revealed through inspection of daily accumulations of the hail size product and the azimuthal shear products. MYRORSS contains data from April 1998 through December 2011. The horizontal resolution is 0.01° by 0.01° and t...
agriculturecogdeafricadisaster responseearth observationgeospatialnatural resourcesatellite imagerystacsustainabilitysynthetic aperture radar
The 25 m PALSAR-2 ScanSAR is normalized backscatter data of PALSAR-2 broad area observation mode with observation width of 350 km. The SAR imagery was ortho-rectificatied and slope corrected using the ALOS World 3D - 30 m (AW3D30) Digital Surface Model. Polarization data are stored as 16-bit digital numbers (DN). The DN values can be converted to gamma naught values in decibel unit (dB) using the following equation: γ0 = 10*log10(DN2) - 83.0 dB CARD4L stands for CEOS Analysis Ready Data for Land (Level 2.2) data are ortho-rectified and radiometrically terrain-corrected. This datase...
agriculturecogdeafricadisaster responseearth observationgeospatialnatural resourcesatellite imagerystacsustainabilitysynthetic aperture radar
Torrential rainfall triggered flooding and landslides in many parts of Rwanda. The hardest-hit districts were Ngororero, Rubavu, Nyabihu, Rutsiro and Karongi. According to reports, 14 people have died in Karongi, 26 in Rutsiro, 18 in Rubavu, 19 in Nyabihu and 18 in Ngororero.Rwanda National Police reported that the Mukamira-Ngororero and Rubavu-Rutsiro roads are impassable due to flooding and landslide debris. UNITAR on behalf of United Nations Office for the Coordination of Humanitarian Affairs (OCHA) / Regional Office for Southern & Eastern Africa in cooperation with Rwanda Space Agency ...
agriculturecogdisaster responseearth observationgeospatialnatural resourcesatellite imagerystacsustainabilitysynthetic aperture radar
Tropical Cyclone Mocha began to form in the Bay of Bengal on 11 May 2023 and continues to intensify as it moves towards Myanmar and Bangladesh.Cyclone Mocha is the first storm to form in the Bay of Bengal this year and is expected to hit several coastal areas in Bangladesh on 14 May with wind speeds of up to 175 km/h.After made its landfall in the coast between Cox’s Bazar (Bangladesh) and Kyaukphyu (Myanmar) near Sittwe (Myanmar). At most, Catastrophic Damage-causing winds was possible especially in the areas of Rakhine State and Chin State, and Severe Damage-causing winds is possible in the ...
agricultureearth observationforecasthydrologymeteorologicalnatural resourceweather
En el marco del Sistema de Información de Sequías del Sur de Sudamérica (SISSA) se ha desarrollado una base de predicciones en escala subestacional y estacional con datos corregidos y sin corregir, con el propósito que permita estudiar predictibilidad en distintas escalas y también que sirva para alimentar modelos de sectores como agricultura e hidrología.
La base contiene datos en escala diaria entre 2000-2019 (sin corregir) y 2010-2019 (corregidos) para diversas variables incluyendo: temperatura media, máxima y mínima, así como también lluvia, viento medio y otras variables pensadas para alimentar modelos hidrológicos y de cultivo.
La base de datos abarca toda el área del Centro Regional del Clima para el sur de sudamérica (CRC-SAS), abarcando desde Bolivia y centro-sur de Brasil hasta la Patagonia incluyendo los países miembros como Chile, Argentina, Brasil, Paraguay, Uruguay y Bolivia.
La base fue generada a partir de datos de GEFSv12 para escala subestacional (GEFS) y CFS2 para escala estacional (CFS2). Para la generación de los datos corregidos se utilizaron los datos del reanálisis de ERA5 (ERA5).
Within the framework of the Southern South American Drought Information System (SISSA), a base of sub-seasonal and seasonal scale predictions has been developed with corrected and uncorrected data, with the purpose of studying predictability at different scales and also to be used to feed models for sectors such as agriculture and hydrology.
The database contains daily scale data between 2000-2019 (uncorrected) and 2010-2019 (corrected) for several variables including: mean, maximum and minimum temperature, as well as rainfall, mean wind and other variables intended to feed hydrological and crop models.
The database covers the entire area of the Regional Climate Center for Southern South America (CRC-SAS), from Bolivia and south-central Brazil to Patagonia, including member countries such as Chile, Argentina, Brazil, Paraguay, Uruguay and Bolivia.
The base was generated from GEFSv12 data for subseasonal scale (GEFS) and CFS2 for seasonal scale (CFS2). Data from the ERA5 reanalysis (ERA5) we...
earth observationmeteorologicalnatural resourceweather
The Servicio Meteorológico Nacional de Argentina (SMN-Arg), the National Meteorological Service of Argentina, shares its deterministic forecasts generated with WRF 4.0 (Weather and Research Forecasting) initialized at 00 and 12 UTC every day.
This forecast includes some key hourly surface variables –2 m temperature, 2 m relative humidity, 10 m wind magnitude and direction, and precipitation–, along with other daily variables, minimum and maximum temperature.
The forecast covers Argentina, Chile, Uruguay, Paraguay and parts of Bolivia and Brazil in a Lambert conformal projection, with 4 km...
activity detectionagriculturecogdisaster responseearth observationenvironmentalgeospatialimage processingland covernatural resourcesatellite imagerystac
The Venµs science mission is a joint research mission undertaken by CNES and ISA, the Israel Space Agency. It aims to demonstrate the effectiveness of high-resolution multi-temporal observation optimised through Copernicus, the global environmental and security monitoring programme. Venµs was launched from the Centre Spatial Guyanais by a VEGA rocket, during the night from 2017, August 1st to 2nd. Thanks to its multispectral camera (12 spectral bands in the visible and near-infrared ranges, with spectral characteristics provided here), it acquires imagery every 1-2 days over 100+ areas at...