The Registry of Open Data on AWS is now available on AWS Data Exchange
All datasets on the Registry of Open Data are now discoverable on AWS Data Exchange alongside 3,000+ existing data products from category-leading data providers across industries. Explore the catalog to find open, free, and commercial data sets. Learn more about AWS Data Exchange

About

This registry exists to help people discover and share datasets that are available via AWS resources. See recent additions and learn more about sharing data on AWS.

See all usage examples for datasets listed in this registry tagged with imaging.


Search datasets (currently 13 matching datasets)

You are currently viewing a subset of data tagged with imaging.


Add to this registry

If you want to add a dataset or example of how to use a dataset to this registry, please follow the instructions on the Registry of Open Data on AWS GitHub repository.

Unless specifically stated in the applicable dataset documentation, datasets available through the Registry of Open Data on AWS are not provided and maintained by AWS. Datasets are provided and maintained by a variety of third parties under a variety of licenses. Please check dataset licenses and related documentation to determine if a dataset may be used for your application.


Tell us about your project

If you have a project using a listed dataset, please tell us about it. We may work with you to feature your project in a blog post.

NASA Prediction of Worldwide Energy Resources (POWER)

agricultureair qualityanalyticsarchivesatmosphereclimateclimate modeldata assimilationdeep learningearth observationenergyenvironmentalforecastgeosciencegeospatialglobalhistoryimagingindustrymachine learningmachine translationmetadatameteorologicalmodelnetcdfopendapradiationsatellite imagerysolarstatisticssustainabilitytime series forecastingwaterweatherzarr

NASA's goal in Earth science is to observe, understand, and model the Earth system to discover how it is changing, to better predict change, and to understand the consequences for life on Earth. The Applied Sciences Program, within the Earth Science Division of the NASA Science Mission Directorate, serves individuals and organizations around the globe by expanding and accelerating societal and economic benefits derived from Earth science, information, and technology research and development.

The Prediction Of Worldwide Energy Resources (POWER) Project, funded through the Applied Sciences Program at NASA Langley Research Center, gathers NASA Earth observation data and parameters related to the fields of surface solar irradiance and meteorology to serve the public in several free, easy-to-access and easy-to-use methods. POWER helps communities become resilient amid observed climate variability by improving data accessibility, aiding research in energy development, building energy efficiency, and supporting agriculture projects.

The POWER project contains over 380 satellite-derived meteorology and solar energy Analysis Ready Data (ARD) at four temporal levels: hourly, daily, monthly, and climatology. The POWER data archive provides data at the native resolution of the source products. The data is updated nightly to maintain near real time availability (2-3 days for meteorological parameters and 5-7 days for solar). The POWER services catalog consists of a series of RESTful Application Programming Interfaces, geospatial enabled image services, and web mapping Data Access Viewer. These three service offerings support data discovery, access, and distribution to the project’s user base as ARD and as direct application inputs to decision support tools.

The latest data version update includes hourly...

Details →

Usage examples

See 18 usage examples →

Fly Brain Anatomy: FlyLight Gen1 and Split-GAL4 Imagery

biologyfluorescence imagingimage processingimaginglife sciencesmicroscopyneurobiologyneuroimagingneuroscience

This data set, made available by Janelia's FlyLight project, consists of fluorescence images of Drosophila melanogaster driver lines, aligned to standard templates, and stored in formats suitable for rapid searching in the cloud. Additional data will be added as it is published.

Details →

Usage examples

See 13 usage examples →

International Neuroimaging Data-Sharing Initiative (INDI)

Homo sapiensimaginglife sciencesmagnetic resonance imagingneuroimagingneuroscience

This bucket contains multiple neuroimaging datasets that are part of the International Neuroimaging Data-Sharing Initiative. Raw human and non-human primate neuroimaging data include 1) Structural MRI; 2) Functional MRI; 3) Diffusion Tensor Imaging; 4) Electroencephalogram (EEG) In addition to the raw data, preprocessed data is also included for some datasets. A complete list of the available datasets can be seen in the documentation lonk provided below.

Details →

Usage examples

See 11 usage examples →

Low Altitude Disaster Imagery (LADI) Dataset

aerial imagerycoastalcomputer visiondisaster responseearth observationearthquakesgeospatialimage processingimaginginfrastructurelandmachine learningmappingnatural resourceseismologytransportationurbanwater

The Low Altitude Disaster Imagery (LADI) Dataset consists of human and machine annotated airborne images collected by the Civil Air Patrol in support of various disaster responses from 2015-2023. Two key distinctions are the low altitude, oblique perspective of the imagery and disaster-related features, which are rarely featured in computer vision benchmarks and datasets.

Details →

Usage examples

See 11 usage examples →

CBERS on AWS

agriculturecogdisaster responseearth observationgeospatialimagingsatellite imagerystac

Imagery acquired by the China-Brazil Earth Resources Satellite (CBERS), 4 and 4A. The image files are recorded and processed by Instituto Nacional de Pesquisas Espaciais (INPE) and are converted to Cloud Optimized Geotiff format in order to optimize its use for cloud based applications. Contains all CBERS-4 MUX, AWFI, PAN5M and PAN10M scenes acquired since the start of the satellite mission and is daily updated with new scenes. CBERS-4A MUX Level 4 (Orthorectified) scenes are being ingested starting from 04-13-2021. CBERS-4A WFI Level 4 (Orthorectified) scenes are being ingested starting from ...

Details →

Usage examples

See 10 usage examples →

BossDB Open Neuroimagery Datasets

calcium imagingelectron microscopyimaginglife scienceslight-sheet microscopymagnetic resonance imagingneuroimagingneurosciencevolumetric imagingx-rayx-ray microtomographyx-ray tomography

This data ecosystem, Brain Observatory Storage Service & Database (BossDB), contains several neuro-imaging datasets across multiple modalities and scales, ranging from nanoscale (electron microscopy), to microscale (cleared lightsheet microscopy and array tomography), and mesoscale (structural and functional magnetic resonance imaging). Additionally, many of the datasets include dense segmentation and meshes.

Details →

Usage examples

See 6 usage examples →

Amazonia EO satellite on AWS

agriculturecogdisaster responseearth observationgeospatialimagingsatellite imagerystacsustainability

Imagery acquired by Amazonia-1 satellite. The image files are recorded and processed by Instituto Nacional de Pesquisas Espaciais (INPE) and are converted to Cloud Optimized Geotiff format in order to optimize its use for cloud based applications. WFI Level 4 (Orthorectified) scenes are being ingested daily starting from 08-29-2022, the complete Level 4 archive will be ingested by the end of October 2022.

Details →

Usage examples

See 5 usage examples →

Automated Segmentation of Intracellular Substructures in Electron Microscopy (ASEM) on AWS

biologycell biologycomputer visionelectron microscopyimaginglife sciencesmicroscopysegmentation

The Automated Segmentation of intracellular substructures in Electron Microscopy (ASEM) project provides deep learning models trained to segment structures in 3D images of cells acquired by Focused Ion Beam Scanning Electron Microscopy (FIB-SEM). Each model is trained to detect a single type of structure (mitochondria, endoplasmic reticulum, golgi apparatus, nuclear pores, clathrin-coated pits) in cells prepared via chemically-fixation (CF) or high-pressure freezing and freeze substitution (HPFS). You can use our open source pipeline to load a model and predict a class of sub-cellular structur...

Details →

Usage examples

See 5 usage examples →

MONKEY

cancerclassificationcomputational pathologycomputer visiondeep learningdigital pathologygrand-challenge.orghistopathologyimaginglife sciencesmachine learningmedical image computingmedical imaging

This dataset contains the training data for the Machine learning for Optimal detection of iNflammatory cells in the KidnEY or MONKEY challenge. The MONKEY challenge focuses on the automated detection and classification of inflammatory cells, specifically monocytes and lymphocytes, in kidney transplant biopsies using Periodic acid-Schiff (PAS) stained whole-slide images (WSI). It contains 80 WSI, collected from 4 different pathology institutes, with annotated regions of interest. For each WSI up to 3 different PAS scans and one IHC slide scan are available. This dataset and challenge support th...

Details →

Usage examples

See 5 usage examples →

The Human Connectome Project

biologyimaginglife sciencesneurobiologyneuroimagingneuroscience

The Human Connectome Project (HCP Young Adult, HCP-YA) is mapping the healthy human connectome by collecting and freely distributing neuroimaging and behavioral data on 1,200 normal young adults, aged 22-35.

Details →

Usage examples

See 5 usage examples →

Mouse Brain Anatomy: MouseLight Imagery

biologyfluorescence imagingimage processingimaginglife sciencesmicroscopyneurobiologyneuroimagingneuroscience

This data set, made available by Janelia's MouseLight project, consists of images and neuron annotations of the Mus musculus brain, stored in formats suitable for viewing and annotation using the HortaCloud cloud-based annotation system.

Details →

Usage examples

See 4 usage examples →

OpenCell on AWS

biologycell biologycell imagingcomputer visionfluorescence imagingimaginglife sciencesmachine learningmicroscopy

The OpenCell project is a proteome-scale effort to measure the localization and interactions of human proteins using high-throughput genome engineering to endogenously tag thousands of proteins in the human proteome. This dataset consists of the raw confocal fluorescence microscopy images for all tagged cell lines in the OpenCell library. These images can be interpreted both individually, to determine the localization of particular proteins of interest, and in aggregate, by training machine learning models to classify or quantify subcellular localization patterns.

Details →

Usage examples

See 4 usage examples →

Allen Ivy Glioblastoma Atlas

biologycancercomputer visiongene expressiongeneticglioblastomaHomo sapiensimage processingimaginglife sciencesmachine learningneurobiology

This dataset consists of images of glioblastoma human brain tumor tissue sections that have been probed for expression of particular genes believed to play a role in development of the cancer. Each tissue section is adjacent to another section that was stained with a reagent useful for identifying histological features of the tumor. Each of these types of images has been completely annotated for tumor features by a machine learning process trained by expert medical doctors.

Details →

Usage examples

See 3 usage examples →

Allen Mouse Brain Atlas

biologygene expressiongeneticimage processingimaginglife sciencesMus musculusneurobiologytranscriptomics

The Allen Mouse Brain Atlas is a genome-scale collection of cellular resolution gene expression profiles using in situ hybridization (ISH). Highly methodical data production methods and comprehensive anatomical coverage via dense, uniformly spaced sampling facilitate data consistency and comparability across >20,000 genes. The use of an inbred mouse strain with minimal animal-to-animal variance allows one to treat the brain essentially as a complex but highly reproducible three-dimensional tissue array. The entire Allen Mouse Brain Atlas dataset and associated tools are available through an...

Details →

Usage examples

See 3 usage examples →

CZ Grand Challenges - Imaging MIT Licensed data and models

biodiversitybioinformaticsbiologybiomolecular modelingbrain imagescell biologycell imagingcziimaginglife sciencesmachine learningmicroscopymodelproteinzarr

This dataset contains a diverse range of imaging biological data and models. The data is sourced and curated by a team of experts at CZI and is made available as part of these datasets only when it is not publicly accessible or requires transformations to support model training.

Details →

Usage examples

See 6 usage examples →

Cell Organelle Segmentation in Electron Microscopy (COSEM) on AWS

cell biologycomputer visionelectron microscopyimaginglife sciencesorganelle

High resolution images of subcellular structures.

Details →

Usage examples

See 3 usage examples →

Indiana Statewide Digital Aerial Imagery Catalog

aerial imageryagriculturecogearth observationgeospatialimagingmappingnatural resourcesustainability

The State of Indiana Geographic Information Office and IOT Office of Technology manage a series of digital orthophotography dating back to 2005. Every year's worth of imagery is available as Cloud Optimized GeoTIFF (COG) files, original GeoTIFF, and other compressed deliverables such as ECW and MrSID. Additionally, each imagery year is organized into a tile grid scheme covering the entire geography of Indiana. All years of imagery are tiled from a 5,000 ft grid or sub tiles depending upon the resolution of the imagery. The naming of the tiles reflects the lower left coordinate from the...

Details →

Usage examples

See 3 usage examples →

Indiana Statewide Elevation Catalog

agricultureearth observationgeospatialimaginglidarmappingnatural resourcesustainability

The State of Indiana Geographic Information Office and IOT Office of Technology manage a series of digital LiDAR LAS files stored in AWS, dating back to the 2011-2013 collection and including the NRCS-funded 2016-2020 collection. These LiDAR datasets are available as uncompressed LAS files, for cloud storage and access. Each year's data is organized into a tile grid scheme covering the entire geography of Indiana, ensuring easy access and efficient processing. The tiles' naming reflects each tile's lower left coordinate, facilitating accurate data management and retrieval. The AWS ...

Details →

Usage examples

See 3 usage examples →

Medical Segmentation Decathlon

computed tomographyhealthimaginglife sciencesmagnetic resonance imagingmedicineniftisegmentation

With recent advances in machine learning, semantic segmentation algorithms are becoming increasingly general purpose and translatable to unseen tasks. Many key algorithmic advances in the field of medical imaging are commonly validated on a small number of tasks, limiting our understanding of the generalisability of the proposed contributions. A model which works out-of-the-box on many tasks, in the spirit of AutoML, would have a tremendous impact on healthcare. The field of medical imaging is also missing a fully open source and comprehensive benchmark for general purpose algorithmic validati...

Details →

Usage examples

See 3 usage examples →

NASA High Energy Astrophysics Mission Data

archivesastronomydatacenterimagingsatellite imageryx-ray

NASA data for high energy astrophysics (generally x-ray and gamma-ray domains) is made available here by the High Energy Astrophysics Science Archive Research Center. The HEASARC hosts the full data archives of over 30 different missions spanning 50 years. The data archive for each mission will contain a range of data types from spacecraft housekeeping and raw photon event list data up to high level science-ready products such as images, light curves (time series), and energy spectra.

This is a relatively modest total data volume but contains significant complexity and heterogeneity among the different missions. Data provided here are stored in the Flexible Image Transport System (FITS) format common in astronomy. Higher level products are further defined to be consistent between missions following data model standards agreed by the community and maintained by the HEASARC. Analysis of these data may require software also provided by HEASARC, the HEASoft package, consisting of tools generic to all FITS data, generic to all HEASARC-compliant data, and/or specific to individual missions as appropriate. Some missions provide standard science-ready data products, while others provide low-level data types and software to generate science-ready products from them. See the links for each mission for more information on how to use the data.

The HEASARC Website also has archive browsing tools where you can query for observations corresponding to temporal and spatial constraints among others. These tools will ultimately point to files located on the archive by giving a URL beginning with the path https://heasarc.gsfc.nasa.gov/FTP/. The data that are provided in the ODR follow the same structure, so when our tools give an https access URL, a user can simply swap in s3://nasa-heasarc/ for the first part of that URL and get a cloud URI. Note also that some selections have been made to what has been copied to the ODR, while the HEASARC archive itself remains the definitive and legacy source for the complete datasets.

The HEASARC also...

Details →

Usage examples

See 3 usage examples →

NASA Legacy Archive for Microwave Background Data Analysis (LAMBDA)

archivesastronomydatacenterimagingsatellite imagery

NASA data for cosmic microwave background (CMB) analysis is made available here by the Legacy Archive for Microwave Background Data Analysis (LAMBDA), which is a part of NASA's High Energy Astrophysics Science Archive Research Center (HEASARC). LAMBDA hosts the data archives of over 30 different CMB missions spanning 30+ years. The data archive for each mission may contain a range of data types from low-level time-ordered data to high level science-ready products such as sky maps and angular power spectra. Also provided in consistent formats are a variety of full sky maps in complementary ...

Details →

Usage examples

See 3 usage examples →

NASA Space Biology Open Science Data Repository (OSDR)

bioinformaticsbiologyGeneLabgenomicimaginglife sciencesspace biology

NASA’s Space Biology Open Science Data Repository (OSDR) introduces a one-stop site where users can explore and contribute a variety of NASA open science biological data. This site consolidates data from the Ames Life Sciences Data Archive (ALSDA) and GeneLab and includes information about the broader NASA Open Science and Open Data initiatives, all at one centralized location. Our mission is to maximize the utilization of the valuable biological research resources and enable new discoveries.

OSDR introduces access to data generated from spaceflight and space relevant experiments that explore
...

Details →

Usage examples

See 3 usage examples →

National Cancer Institute Imaging Data Commons (IDC) Collections

cancerdigital pathologyfluorescence imagingimage processingimaginglife sciencesmachine learningmicroscopyradiology

Imaging Data Commons (IDC) is a repository within the Cancer Research Data Commons (CRDC) that manages imaging data and enables its integration with the other components of CRDC. IDC hosts a growing number of imaging collections that are contributed by either funded US National Cancer Institute (NCI) data collection activities, or by the individual researchers.Image data hosted by IDC is stored in DICOM format.

Details →

Usage examples

See 3 usage examples →

STOIC2021 Training

computed tomographycomputer visioncoronavirusCOVID-19grand-challenge.orgimaginglife sciencesSARS-CoV-2

The STOIC project collected Computed Tomography (CT) images of 10,735 individuals suspected of being infected with SARS-COV-2 during the first wave of the pandemic in France, from March to April 2020. For each patient in the training set, the dataset contains binary labels for COVID-19 presence, based on RT-PCR test results, and COVID-19 severity, defined as intubation or death within one month from the acquisition of the CT scan. This S3 bucket contains the training sample of the STOIC dataset as used in the STOIC2021 challenge on grand-challenge.org.

Details →

Usage examples

See 3 usage examples →

State of Colorado Imagery

aerial imagerygeospatialimagingmapping

The State of Colorado has gathered public historical imagery ranging from 2005 to 2021.

Details →

Usage examples

See 3 usage examples →

4D Nucleome (4DN)

bioinformaticsbiologygeneticgenomicimaginglife sciences

The goal of the National Institutes of Health (NIH) Common Fund’s 4D Nucleome (4DN) program is to study the three-dimensional organization of the nucleus in space and time (the 4th dimension). The nucleus of a cell contains DNA, the genetic “blueprint” that encodes all of the genes a living organism uses to produce proteins needed to carry out life-sustaining cellular functions. Understanding the conformation of the nuclear DNA and how it is maintained or changes in response to environmental and cellular cues over time will provide insights into basic biology as well as aspects of human health...

Details →

Usage examples

See 2 usage examples →

Brain/MINDS Marmoset Connectivity Resource on AWS

brain imagesimaginglife sciencesmicroscopyneurobiologyneuroimagingneuroscienceniftinon-human primate

Brain/MINDS Marmoset Connectivity Resource (BMCR) is a resource that provides access to anterograde and retrograde neuronal tracer data, made available by Brain/MINDS project. It is currently restricted to injections into the prefrontal cortex of a marmoset brain but is planned to include injections into entire cortical areas and representative subcortical brain regions.

Details →

Usage examples

See 5 usage examples →

Cell Painting Image Collection

biologycell imagingcell paintingfluorescence imaginghigh-throughput imagingimaginglife sciencesmicroscopy

The Cell Painting Image Collection is a collection of freely downloadable microscopy image sets. Cell Painting is an unbiased high throughput imaging assay used to analyze perturbations in cell models. In addition to the images themselves, each set includes a description of the biological application and some type of "ground truth" (expected results). Researchers are encouraged to use these image sets as reference points when developing, testing, and publishing new image analysis algorithms for the life sciences. We hope that the this data set will lead to a better understanding of w...

Details →

Usage examples

See 2 usage examples →

DigitalCorpora

computer forensicscomputer securityCSIcyber securitydigital forensicsimage processingimaginginformation retrievalinternetintrusion detectionmachine learningmachine translationtext analysis

Disk images, memory dumps, network packet captures, and files for use in digital forensics research and education. All of this information is accessible through the digitalcorpora.org website, and made available at s3://digitalcorpora/. Some of these datasets implement scenarios that were performed by students, faculty, and others acting in persona. As such, the information is synthetic and may be used without prior authorization or IRB approval. Details of these datasets can be found at Details →

Usage examples

See 2 usage examples →

EMory BrEast Imaging Dataset (EMBED)

biasbiologycancerhealthimaginglife sciencesmammographyx-ray

EMBED is a racially diverse mammography dataset containing 3.4M screening and diagnostic images from 110,000 patients collected from 2013-2020, with an equal representation of black and white women. The dataset is comprised of 2D, synthetic 2D (C-view), and 3D (digital breast tomosynthesis, i.e. DBT) images. It contains 60,000 annotated lesions linked to structured imaging descriptors and ground truth pathologic outcomes grouped into six severity classes. This release represents 20% of the total 2D and C-view dataset and is available for research use. DBT, US, and MRI exams will be added at a ...

Details →

Usage examples

See 2 usage examples →

Emory Knee Radiograph (MRKR) dataset

bioinformaticsbiologycomputer visioncsvhealthimaginglabeledlife sciencesmachine learningmedical image computingmedical imagingradiologyx-ray

The Emory Knee Radiograph (MRKR) dataset is a large, demographically diverse collection of 503,261 knee radiographs from 83,011 patients, 40% of which are African American. This dataset provides imaging data in DICOM format along with detailed clinical information, including patient- reported pain scores, diagnostic codes, and procedural codes, which are not commonly available in similar datasets. The MRKR dataset also features imaging metadata such as image laterality, view type, and presence of hardware, enhancing its value for research and model development. MRKR addresses significant gaps ...

Details →

Usage examples

See 2 usage examples →

3-Band Cryo Data | Wide-field Infrared Survey Explorer (WISE)

astronomyimagingsatellite imagerysurvey

The Wide-field Infrared Survey Explorer (WISE) was a NASA Medium Explorer satellite in low-Earth orbit that conducted an all-sky astronomical imaging survey over four infrared bands from 2010-2011. The 3-Band Cryo Data Release contains 3.4, 4.6 and 12 micron (W1, W2, W3) imaging data that were acquired between 6 Aug and 29 Sept 2010 while the detectors were cooled by the inner cryogen tank following the exhaustion of the outer tank.

Details →

Usage examples

See 1 usage example →

All-Sky Data | Wide-field Infrared Survey Explorer (WISE)

astronomyimagingsatellite imagerysurvey

The Wide-field Infrared Survey Explorer (WISE) was a NASA Medium Explorer satellite in low-Earth orbit that conducted an all-sky astronomical imaging survey over four infrared bands from 2010-2011. The All-Sky Release includes all data taken during the WISE full cryogenic mission phase, 7 January 2010 to 6 August 2010, in the 3.4, 4.6, 12, and 22 micron bands (i.e., W1, W2, W3, W4) that were processed with improved calibrations and reduction algorithms.

Details →

Usage examples

See 1 usage example →

AllWISE Data | Wide-field Infrared Survey Explorer (WISE)

astronomyimagingobject detectionparquetsatellite imagerysurvey

The Wide-field Infrared Survey Explorer (WISE) was a NASA Medium Explorer satellite in low-Earth orbit that conducted an all-sky astronomical imaging survey over four infrared bands from 2010-2011. The AllWISE Data Release combines data from all cryogenic and post-cryogenic survey phases and provides a comprehensive view of the mid-infrared sky. The Images Atlas includes 18,240 FITS image sets at 3.4, 4.6, 12 and 22 microns. The Source Catalog contains position, apparent motion, and flux information for over 747 million objects detected on the Atlas Images.

Details →

Usage examples

See 1 usage example →

Allen Brain Observatory - Visual Coding AWS Public Data Set

electrophysiologyimage processingimaginglife sciencesMus musculusneurobiologyneuroimagingsignal processing

The Allen Brain Observatory – Visual Coding is a large-scale, standardized survey of physiological activity across the mouse visual cortex, hippocampus, and thalamus. It includes datasets collected with both two-photon imaging and Neuropixels probes, two complementary techniques for measuring the activity of neurons in vivo. The two-photon imaging dataset features visually evoked calcium responses from GCaMP6-expressing neurons in a range of cortical layers, visual areas, and Cre lines. The Neuropixels dataset features spiking activity from distributed cortical and subcortical brain regions, c...

Details →

Usage examples

See 1 usage example →

Allen Institute for Neural Dynamics - Mouse Neuroanatomy and Physiology Data

electrophysiologyimage processingimaginglife sciencesMus musculusneurobiologyneuroimagingsignal processing

The Allen Institute for Neural Dynamics (AIND) is committed to FAIR, Open, and Reproducible science. We therefore share all of the raw and derived data we collect publicly with rich metadata, including preliminary data collected during methods development, as near to the time of collection as possible.

Details →

Usage examples

See 1 usage example →

LOFAR ELAIS-N1 cycle 2 observations on AWS

astronomyimagingsurvey

These data correspond to the International LOFAR Telescope observations of the sky field ELAIS-N1 (16:10:01 +54:30:36) during the cycle 2 of observations. There are 11 runs of about 8 hours each plus the corresponding observation of the calibration targets before and after the target field. The data are measurement sets (MS) containing the cross-correlated data and metadata divided in 371 frequency sub-bands per target centred at ~150 MHz.

Details →

Usage examples

See 1 usage example →

NEOWISE Post-Cryo Data | Wide-field Infrared Survey Explorer (WISE)

astronomyimagingsatellite imagerysurvey

The Wide-field Infrared Survey Explorer (WISE) was a NASA Medium Explorer satellite in low-Earth orbit that conducted an all-sky astronomical imaging survey over four infrared bands from 2010-2011. The NEOWISE Post-Cryo Data Release contains 3.4 and 4.6 micron (W1 and W2) imaging data that were acquired between 29 September 2010 and 1 February 2011 following the exhaustion of the inner and outer cryogen tanks.

Details →

Usage examples

See 1 usage example →

NEOWISE Reactivation Data | Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE)

astronomyimagingobject detectionparquetsatellite imagerysurvey

The Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) is a NASA Medium-class Explorer satellite in low-Earth orbit conducting an all-sky astronomical imaging survey over two infrared bands. The NEOWISE Reactivation mission began in 2013 when the original WISE satellite was brought out of hibernation to learn more about the population of near-Earth objects and comets that could pose an impact hazard to the Earth. The data is also used to study a wide range of astrophysical phenomena in the time domain including brown dwarfs, supernovae and active galactic nuclei.

Details →

Usage examples

See 1 usage example →

NYUMets Brain Dataset

biologycancercomputer visionhealthimage processingimaginglife sciencesmachine learningmagnetic resonance imagingmedical imagingmedicineneurobiologyneuroimagingsegmentation

This dataset contains 8,000+ brain MRIs of 2,000+ patients with brain metastases.

Details →

Usage examples

See 1 usage example →

New Jersey Statewide Digital Aerial Imagery Catalog

aerial imagerycogearth observationgeospatialimagingmapping

The New Jersey Office of GIS, NJ Office of Information Technology manages a series of 11 digital orthophotography and scanned aerial photo maps collected at various years ranging from 1930 to 2017. Each year’s worth of imagery are available as Cloud Optimized GeoTIFF (COG) files and some years are available as compressed MrSID and/or JP2 files. Additionally, each year of imagery is organized into a tile grid scheme covering the entire geography of New Jersey. Many years share the same tiling grid while others have unique grids as defined by the project at the time.

Details →

Usage examples

See 1 usage example →

Ohio State Cardiac MRI Raw Data (OCMR)

Homo sapiensimage processingimaginglife sciencesmagnetic resonance imagingsignal processing

OCMR is an open-access repository that provides multi-coil k-space data for cardiac cine. The fully sampled MRI datasets are intended for quantitative comparison and evaluation of image reconstruction methods. The free-breathing, prospectively undersampled datasets are intended to evaluate their performance and generalizability qualitatively.

Details →

Usage examples

See 1 usage example →

OpenUniverse 2024 Simulated Roman & Rubin Images

astronomyimagingobject detectionparquetsatellite imagerysimulationssurvey

This release consists of simulated data products designed to mimic observations of the same region of the sky as seen by two astronomical facilities: the Nancy Grace Roman Telescope and the Vera C. Rubin Observatory.

Details →

Usage examples

See 1 usage example →

Seattle Alzheimer's Disease Brain Cell Atlas (SEA-AD)

biologycell biologycell imagingepigenomicsgene expressionhistopathologyHomo sapiensimaginglife sciencesmedicinemicroscopyneurobiologyneurosciencesingle-cell transcriptomicstranscriptomics

The Seattle Alzheimer's Disease Brain Cell Atlas (SEA-AD) consortium strives to gain a deep molecular and cellular understanding of the early pathogenesis of Alzheimer's disease and is funded by the National Institutes on Aging (NIA U19AG060909). The SEA-AD datasets available here comprise single cell profiling (transcriptomics and epigenomics) and quantitative neuropathology. To explore gene expression and chromatin accessibility information, the single-cell profiling data includes: snRNAseq and snATAC-seq data from the SEA-AD donor cohort (aged brains which span the spectrum of Alzhe...

Details →

Usage examples

See 1 usage example →

Spitzer Enhanced Imaging Products (SEIP) Super Mosaics

astronomyimagingsatellite imagerysurvey

Spitzer was an infrared astronomy space telescope with imaging from 3 to 160 microns and spectroscopy from 5 to 37 microns, launched into an Earth-trailing solar orbit as the last of NASA's Great Observatories. The SEIP Super Mosaics include data from the four channels of IRAC (3.6, 4.5, 5.8, 8 microns) and the 24 micron channel of MIPS. Data from multiple programs are combined where appropriate. Cryogenic Release v3.0 includes Spitzer data taken during commissioning and cryogenic operations, including calibration data.

Details →

Usage examples

See 1 usage example →

Synthea Coherent Data Set

bioinformaticscsvdicomgenomichealthimaginglife sciencesmedicine

This is a synthetic data set that includes FHIR resources, DICOM images, genomic data, physiological data (i.e., ECGs), and simple clinical notes. FHIR links all the data types together.

Details →

Usage examples

See 1 usage example →

Xiph.Org Test Media

computer visionimage processingimagingmediamoviesmultimediavideo

Uncompressed video used for video compression and video processing research.

Details →

Usage examples

See 1 usage example →

CZ Grand Challenges - Imaging BSD licensed data and models

biodiversitybioinformaticsbiologybiomolecular modelingbrain imagescell biologycell imagingcziimaginglife sciencesmachine learningmicroscopymodelproteinzarr

This dataset contains a diverse range of imaging biological data and models. The data is sourced and curated by a team of experts at CZI and is made available as part of these datasets only when it is not publicly accessible or requires transformations to support model training.

Details →

Usage examples

See 3 usage examples →

Natural Scenes Dataset

computer visionimage processingimaginglife sciencesmachine learningmagnetic resonance imagingneuroimagingneurosciencenifti

Here, we collected and pre-processed a massive, high-quality 7T fMRI dataset that can be used to advance our understanding of how the brain works. A unique feature of this dataset is the massive amount of data available per individual subject. The data were acquired using ultra-high-field fMRI (7T, whole-brain, 1.8-mm resolution, 1.6-s TR). We measured fMRI responses while each of 8 participants viewed 9,000–10,000 distinct, color natural scenes (22,500–30,000 trials) in 30–40 weekly scan sessions over the course of a year. Additional measures were collected including resting-state data, retin...

Details →

OpenNeuro

biologyimaginglife sciencesneurobiologyneuroimaging

OpenNeuro is a database of openly-available brain imaging data. The data are shared according to a Creative Commons CC0 license, providing a broad range of brain imaging data to researchers and citizen scientists alike. The database primarily focuses on functional magnetic resonance imaging (fMRI) data, but also includes other imaging modalities including structural and diffusion MRI, electroencephalography (EEG), and magnetoencephalograpy (MEG). OpenfMRI is a project of the Center for Reproducible Neuroscience at Stanford University. Development of the OpenNeuro resource has been funded by th...

Details →

Euclid Quick Release 1 (Q1)

astronomyimagingobject detectionsatellite imagerysurvey

Euclid launched in July 2023 as a European Space Agency (ESA) mission with involvement by NASA. The primary science goals of Euclid are to better understand the composition and evolution of the dark Universe. The Euclid mission will provide space-based imaging and spectroscopy as well as supporting ground-based imaging to achieve these primary goals. These data will be archived by multiple global repositories, including IRSA, where they will support transformational work in many areas of astrophysics. Euclid Quick Release 1 (Q1) consists of ~30 TB of imaging, spectroscopy, and catalogs coverin...

Details →

Usage examples

See 1 usage example →