The Registry of Open Data on AWS is now available on AWS Data Exchange
All datasets on the Registry of Open Data are now discoverable on AWS Data Exchange alongside 3,000+ existing data products from category-leading data providers across industries. Explore the catalog to find open, free, and commercial data sets. Learn more about AWS Data Exchange

NASA Space Act Agreement

Amazon Web Services and the National Aeronautics and Space Administration (NASA) have entered into a Space Act Agreement to explore best practices around discovery, access, and use of high-value NASA science datasets. Making analytics-optimized data stores available to the science community will minimize the need for data wrangling and preprocessing within the community, leading to a faster time to insight and quicker innovation.

Search datasets (currently 13 matching datasets)

Add to this registry

If you want to add a dataset or example of how to use a dataset to this registry, please follow the instructions on the Registry of Open Data on AWS GitHub repository.

Unless specifically stated in the applicable dataset documentation, datasets available through the Registry of Open Data on AWS are not provided and maintained by AWS. Datasets are provided and maintained by a variety of third parties under a variety of licenses. Please check dataset licenses and related documentation to determine if a dataset may be used for your application.

Tell us about your project

If you have a project using a listed dataset, please tell us about it. We may work with you to feature your project in a blog post.

NASA Prediction of Worldwide Energy Resources (POWER)

agricultureair qualityanalyticsarchivesatmosphereclimateclimate modeldata assimilationdeep learningearth observationenergyenvironmentalforecastgeosciencegeospatialglobalhistoryimagingindustrymachine learningmachine translationmetadatameteorologicalmodelnetcdfopendapradiationsatellite imagerysolarstatisticssustainabilitytime series forecastingwaterweatherzarr

NASA's goal in Earth science is to observe, understand, and model the Earth system to discover how it is changing, to better predict change, and to understand the consequences for life on Earth. The Applied Sciences Program serves NASA and Society by expanding and accelerating the realization of societal and economic benefits from Earth science, information, and technology research and development.

The NASA Prediction Of Worldwide Energy Resources (POWER) Project, a NASA Applied Sciences program, improves the accessibility and usage NASA Earth Observations (EO) supporting community research in three focus areas: 1) renewable energy development, 2) building energy efficiency, and 3) agroclimatology applications. POWER can help communities be resilient amid observed climate variability through the easy access of solar and meteorological data via a verity of access methods.

The latest POWER version includes hourly-based source Analysis Ready Data (ARD), in addition to enhanced daily, monthly, annual, and climatology ARD. The daily time-series spans 40 years for meteorology available from 1981 and solar-based parameters start in 1984. The hourly source data are from Clouds and the Earth's Radiant Energy System (CERES) and Global Modeling and Assimilation Office (GMAO), spanning 20 years from 2001. The hourly data will provide users the ARD needed to model the energy performance of building systems, providing information directly amenable to decision support tools introducing the industry standard EPW (EnergyPlus Weather file).

POWER also provides parameters at daily, monthly, annual, and user-defined time periods, spanning from 1984 through to within a week of real time. Additionally, POWER provides are user-defined analytic capabilities, including custom climatologies and climatological-based reports for parameter anomalies, ASHRAE® compatible climate design condition statistics, and building climate zones.

The ARD and climate analytics will be readily accessible through POWER's integrated services suite, including the Data Access Viewer (DAV). The DAV has recently been improved to incorporate updated parameter groupings, new analytical capabilities, and the new data formats. POWER also provides a complete API (Application Programming Interface) that allows uses...

Details →

Usage examples

See 18 usage examples →

Multi-Scale Ultra High Resolution (MUR) Sea Surface Temperature (SST)

climateearth observationenvironmentalnatural resourceoceanssatellite imagerysustainabilitywaterweather

A global, gap-free, gridded, daily 1 km Sea Surface Temperature (SST) dataset created by merging multiple Level-2 satellite SST datasets. Those input datasets include the NASA Advanced Microwave Scanning Radiometer-EOS (AMSR-E), the JAXA Advanced Microwave Scanning Radiometer 2 (AMSR-2) on GCOM-W1, the Moderate Resolution Imaging Spectroradiometers (MODIS) on the NASA Aqua and Terra platforms, the US Navy microwave WindSat radiometer, the Advanced Very High Resolution Radiometer (AVHRR) on several NOAA satellites, and in situ SST observations from the NOAA iQuam project. Data are available fro...

Details →

Usage examples

See 10 usage examples →

Ozone Monitoring Instrument (OMI) / Aura NO2 Tropospheric Column Density

air qualityatmosphereearth observationenvironmentalgeospatialsatellite imagerysustainability

NO2 tropospheric column density, screened for CloudFraction < 30% global daily composite at 0.25 degree resolution for the temporal range of 2004 to May 2020. Original archive data in HDF5 has been processed into a Cloud-Optimized GeoTiff (COG) format. Quality Assurance - This data has been validated by the NASA Science Team at Goddard Space Flight Center.Cautionary Note:

Details →

Usage examples

See 5 usage examples →


climateearth observationnatural resourcesatellite imagerysustainability

A collection of Earth science datasets maintained by NASA, including climate change projections and satellite images of the Earth's surface.

Details →

Usage examples

See 4 usage examples →

Terra Fusion Data Sampler

geospatialsatellite imagerysustainability

The Terra Basic Fusion dataset is a fused dataset of the original Level 1 radiances from the five Terra instruments. They have been fully validate to contain the original Terra instrument Level 1 data. Each Level 1 Terra Basic Fusion file contains one full Terra orbit of data and is typically 15 – 40 GB in size, depending on how much data was collected for that orbit. It contains instrument radiance in physical units; radiance quality indicator; geolocation for each IFOV at its native resolution; sun-view geometry; bservation time; and other attributes/metadata. It is stored in HDF5, conformed to CF conventions, and accessible by netCDF-4 enhanced models. It’s naming convention follows: TERRA_BF_L1B_OXXXX_YYYYMMDDHHMMSS_F000_V000.h5. A concise description of the dataset, along with links to complete documentation and available software tools, can be found on the Terra Fusion project page:

Terra is the flagship satellite of NASA’s Earth Observing System (EOS). It was launched into orbit on December 18, 1999 and carries five instruments. These are the Moderate-resolution Imaging Spectroradiometer (MODIS), the Multi-angle Imaging SpectroRadiometer (MISR), the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), the Clouds and Earth’s Radiant Energy System (CERES), and the Measurements of Pollution in the Troposphere (MOPITT).

The Terra Basic Fusion dataset is an easy-to-access record of the Level 1 radiances for instruments on...

Details →

Usage examples

See 2 usage examples →