The Registry of Open Data on AWS is now available on AWS Data Exchange
All datasets on the Registry of Open Data are now discoverable on AWS Data Exchange alongside 3,000+ existing data products from category-leading data providers across industries. Explore the catalog to find open, free, and commercial data sets. Learn more about AWS Data Exchange

NASA Space Act Agreement

Amazon Web Services and the National Aeronautics and Space Administration (NASA) have entered into a Space Act Agreement to explore best practices around discovery, access, and use of high-value NASA science datasets. Making analytics-optimized data stores available to the science community will minimize the need for data wrangling and preprocessing within the community, leading to a faster time to insight and quicker innovation.


Search datasets (currently 13 matching datasets)


Add to this registry

If you want to add a dataset or example of how to use a dataset to this registry, please follow the instructions on the Registry of Open Data on AWS GitHub repository.

Unless specifically stated in the applicable dataset documentation, datasets available through the Registry of Open Data on AWS are not provided and maintained by AWS. Datasets are provided and maintained by a variety of third parties under a variety of licenses. Please check dataset licenses and related documentation to determine if a dataset may be used for your application.


Tell us about your project

If you have a project using a listed dataset, please tell us about it. We may work with you to feature your project in a blog post.

NASA Prediction of Worldwide Energy Resources (POWER)

agricultureair qualityanalyticsarchivesatmosphereclimateclimate modeldata assimilationdeep learningearth observationenergyenvironmentalforecastgeosciencegeospatialglobalhistoryimagingindustrymachine learningmachine translationmetadatameteorologicalmodelnetcdfopendapradiationsatellite imagerysolarstatisticssustainabilitytime series forecastingwaterweatherzarr

NASA's goal in Earth science is to observe, understand, and model the Earth system to discover how it is changing, to better predict change, and to understand the consequences for life on Earth. The Applied Sciences Program, within the Earth Science Division of the NASA Science Mission Directorate, serves individuals and organizations around the globe by expanding and accelerating societal and economic benefits derived from Earth science, information, and technology research and development.

The Prediction Of Worldwide Energy Resources (POWER) Project, funded through the Applied Sciences Program at NASA Langley Research Center, gathers NASA Earth observation data and parameters related to the fields of surface solar irradiance and meteorology to serve the public in several free, easy-to-access and easy-to-use methods. POWER helps communities become resilient amid observed climate variability by improving data accessibility, aiding research in energy development, building energy efficiency, and supporting agriculture projects.

The POWER project contains over 380 satellite-derived meteorology and solar energy Analysis Ready Data (ARD) at four temporal levels: hourly, daily, monthly, and climatology. The POWER data archive provides data at the native resolution of the source products. The data is updated nightly to maintain near real time availability (2-3 days for meteorological parameters and 5-7 days for solar). The POWER services catalog consists of a series of RESTful Application Programming Interfaces, geospatial enabled image services, and web mapping Data Access Viewer. These three service offerings support data discovery, access, and distribution to the project’s user base as ARD and as direct application inputs to decision support tools.

The latest data version update includes hourly...

Details →

Usage examples

See 18 usage examples →

Multi-Scale Ultra High Resolution (MUR) Sea Surface Temperature (SST)

climateearth observationenvironmentalnatural resourceoceanssatellite imagerywaterweather

A global, gap-free, gridded, daily 1 km Sea Surface Temperature (SST) dataset created by merging multiple Level-2 satellite SST datasets. Those input datasets include the NASA Advanced Microwave Scanning Radiometer-EOS (AMSR-E), the JAXA Advanced Microwave Scanning Radiometer 2 (AMSR-2) on GCOM-W1, the Moderate Resolution Imaging Spectroradiometers (MODIS) on the NASA Aqua and Terra platforms, the US Navy microwave WindSat radiometer, the Advanced Very High Resolution Radiometer (AVHRR) on several NOAA satellites, and in situ SST observations from the NOAA iQuam project. Data are available fro...

Details →

Usage examples

See 10 usage examples →

Catalina Sky Survey (CSS) subset data on AWS

astronomyobject detectionplanetarysurvey

Raw data that discovers Near Earth Objects (NEOs) which potentially could impact Earth

Details →

Usage examples

See 9 usage examples →

NASA Earth Exchange (NEX) Data Collection

climateCMIP5natural resourcesustainability

A collection of downscaled climate change projections, derived from the General Circulation Model (GCM) runs conducted under the Coupled Model Intercomparison Project Phase 5 (CMIP5) [Taylor et al. 2012] and across the four greenhouse gas emissions scenarios known as Representative Concentration Pathways (RCPs) [Meinshausen et al. 2011]. The NASA Earth Exchange group maintains the NEX-DCP30 (CMIP5), NEX-GDDP (CMIP5), and LOCA (CMIP5).

Details →

Usage examples

See 8 usage examples →

Solar Dynamics Observatory (SDO) Machine Learning Dataset

machine learningNASA SMD AI

The v1 dataset includes AIA/HMI observations 2010-2018 and v2 includes AIA/HMI observations 2010-2020 in all 10 wavebands (94A, 131A, 171A, 193A, 211A, 304A, 335A, 1600A, 1700A, 4500A), with 512x512 resolution and 6 minutes cadence; HMI vector magnetic field observations in Bx, By, and Bz components, with 512x512 resolution and 12 minutes cadence; The EVE observations in 39 wavelengths from 2010-05-01 to 2014-05-26, with 10 seconds cadence.

Details →

Usage examples

See 6 usage examples →

NASA / USGS Lunar Orbiter Laser Altimeter Cloud Optimized Point Cloud

elevationlidarplanetarystac

The lunar orbiter laser altimeter (LOLA) has collected and released almost 7 billion individual laser altimeter returns from the lunar surface. This dataset includes individual altimetry returns scraped from the Planetary Data System (PDS) LOLA Reduced Data Record (RDR) Query Tool, V2.0. Data are organized in 15˚ x 15˚ (longitude/latitude) sections, compressed and encoded into the Cloud Optimized Point Cloud (COPC) file format, and collected into a Spatio-Temporal Asset Catalog (STAC) collection for query and analysis. The data are in latitude, longitude, and radius (X, Y, Z) format with the p...

Details →

Usage examples

See 5 usage examples →

Ozone Monitoring Instrument (OMI) / Aura NO2 Tropospheric Column Density

air qualityatmosphereearth observationenvironmentalgeospatialsatellite imagery

NO2 tropospheric column density, screened for CloudFraction < 30% global daily composite at 0.25 degree resolution for the temporal range of 2004 to May 2020. Original archive data in HDF5 has been processed into a Cloud-Optimized GeoTiff (COG) format. Quality Assurance - This data has been validated by the NASA Science Team at Goddard Space Flight Center.Cautionary Note: https://airquality.gsfc.nasa.gov/caution-interpretation.

Details →

Usage examples

See 5 usage examples →

JAXA / USGS / NASA Kaguya/SELENE Terrain Camera Digital Terrain Models

cogelevationplanetarystac

The Japan Aerospace EXploration Agency (JAXA) SELenological and ENgineering Explorer (SELENE) mission’s Kaguya spacecraft was launched on September 14, 2007 and science operations around the Moon started October 20, 2007. The primary mission in a circular polar orbit 100-km above the surface lasted from October 20, 2007 until October 31, 2008. An extended mission was then conducted in lower orbits (averaging 50km above the surface) from November 1, 2008 until the SELENE mission ended with Kaguya impacting the Moon on June 10, 2009. These data are digital terrain models derived using the NASA A...

Details →

Usage examples

See 4 usage examples →

JAXA / USGS / NASA Kaguya/SELENE Terrain Camera Observations

cogplanetarysatellite imagerystac

The Japan Aerospace EXploration Agency (JAXA) SELenological and ENgineering Explorer (SELENE) mission’s Kaguya spacecraft was launched on September 14, 2007 and science operations around the Moon started October 20, 2007. The primary mission in a circular polar orbit 100-km above the surface lasted from October 20, 2007 until October 31, 2008. An extended mission was then conducted in lower orbits (averaging 50km above the surface) from November 1, 2008 until the SELENE mission ended with Kaguya impacting the Moon on June 10, 2009. These data were collected in monoscopic observing mode. To cre...

Details →

Usage examples

See 4 usage examples →

NASA / USGS Controlled Europa DTMs

cogplanetarysatellite imagerystac

Knowledge of a planetary surface’s topography is necessary to understand its geology and enable landed mission operations. The Solid State Imager (SSI) on board NASA’s Galileo spacecraft acquired more than 700 images of Jupiter’s moon Europa. Although moderate- and high-resolution coverage is extremely limited, repeat coverage of a small number of sites enables the creation of digital terrain models (DTMs) via stereophotogrammetry. Here we provide stereo-derived DTMs of five sites on Europa. The sites are the bright band Agenor Linea, the crater Cilix, the crater Pwyll, pits and chaos adjacent...

Details →

Usage examples

See 4 usage examples →

NASA / USGS Controlled THEMIS Mosaics

cogplanetarysatellite imagerystac

These data are infrared image mosaics, tiled to the Mars quadrangle, generated using Thermal Emission Imaging System (THEMIS) images from the 2001 Mars Odyssey orbiter mission. The mosaic is generated at the full resolution of the THEMIS infrared dataset, which is approximately 100 meters/pixel. The mosaic was absolutely photogrammetrically controlled to an improved Viking MDIM network that was develop by the USGS Astrogeology processing group using the Integrated Software for Imagers and Spectrometers. Image-to-image alignment precision is subpixel (i.e., <100m). These 8-bit, qualitative d...

Details →

Usage examples

See 4 usage examples →

NASA / USGS Europa Controlled Observation Mosaics

cogplanetarysatellite imagerystac

The Solid State Imager (SSI) on NASA's Galileo spacecraft acquired more than 500 images of Jupiter's moon, Europa. These images vary from relatively low-resolution hemispherical imaging, to high-resolution targeted images that cover a small portion of the surface. Here we provide a set of 92 image mosaics generated from minimally processed, projected Galileo images with photogrammetrically improved locations on Europa's surface.

These images provide users with nearly the entire Galileo Europa imaging dataset at its native resolution and with improved relative image locations. The S
...

Details →

Usage examples

See 4 usage examples →

NASA / USGS Europa Controlled Observations

cogplanetarysatellite imagerystac

The Solid State Imager (SSI) on NASA's Galileo spacecraft acquired more than 500 images of Jupiter's moon, Europa. These images vary from relatively low-resolution hemispherical imaging, to high-resolution targeted images that cover a small portion of the surface. Here we provide a set of 481 minimally processed, projected Galileo images with photogrammetrically improved locations on Europa's surface. These individual images were subsequently used as input into a set of 92 observation mosaics.

These images provide users with nearly the entire Galileo Europa imaging dataset at its native resolution and with improved relative image locations. The Solid State Imager on NASA's Galileo spacecraft provided the only moderate- to high-resolution images of Jupiter's moon, Europa. Unfortunately, uncertainty in the position and pointing of the spacecraft, as well as the position and orientation of Europa, when the images were acquired resulted in significant errors in image locations on the surface. The result of these errors is that images acquired during different Galileo orbits, or even at different times during the same orbit, are significantly misaligned (errors of up to 100 km on the surface).

The dataset provides a set of individual images that can be used for scientific analysis
...

Details →

Usage examples

See 4 usage examples →

NASA / USGS Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) Targeted DTMs

cogelevationplanetarysatellite imagerystac

As of March, 2023 the Mars Reconnaissance Orbiter (MRO) High Resolution Science Experiment (HiRISE) sensor has collected more than 5000 targeted stereopairs. During HiRISE acquisition, the Context Camera (CTX) also collects lower resolution, higher spatial extent context images. These CTX acquisitions are also targeted stereopairs. This data set contains targeted CTX DTMs and orthoimages, created using the NASA Ames Stereopipeline. These data have been created using relatively controlled CTX images that have been globally bundle adjusted using the USGS Integrated System for Imagers and Spectro...

Details →

Usage examples

See 4 usage examples →

NASA / USGS Released HiRISE Digital Terrain Models

cogplanetarysatellite imagerystac

These data are digital terrain models (DTMs) created by multiple different institutions and released to the Planetary Data System (PDS) by the University of Arizona. The data are processed from the Planetary Data System (PDS) stored JP2 files, map projected, and converted to Cloud Optimized GeoTiffs (COGs) for efficient remote data access. These data are controlled to the Mars Orbiter Laser Altimeter (MOLA). Therefore, they are a proxy for the geodetic coordinate reference frame. These data are not guaranteed to co-register with an uncontrolled products (e.g., the uncontrolled High Resolution ...

Details →

Usage examples

See 4 usage examples →

NASA / USGS Uncontrolled HiRISE RDRs

cogplanetarysatellite imagerystac

These data are red and color Reduced Data Record (RDR) observations collected and originally processed by the High Resolution Imaging Science Experiment (HiRISE) team. The mdata are processed from the Planetary Data System (PDS) stored RDRs, map projected, and converted to Cloud Optimized GeoTiffs (COGs) for efficient remote data access. These data are not photogrammetrically controlled and use a priori NAIF SPICE pointing. Therefore, these data will not co-register with controlled data products. Data are released using simple cylindrical (planetocentric positive East, center longitude 0, -180...

Details →

Usage examples

See 4 usage examples →

NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP-CMIP6)

air temperatureclimateclimate modelclimate projectionsCMIP6cogearth observationenvironmentalglobalmodelNASA Center for Climate Simulation (NCCS)near-surface relative humiditynear-surface specific humiditynetcdfprecipitation

The NEX-GDDP-CMIP6 dataset is comprised of global downscaled climate scenarios derived from the General Circulation Model (GCM) runs conducted under the Coupled Model Intercomparison Project Phase 6 (CMIP6) and across two of the four "Tier 1" greenhouse gas emissions scenarios known as Shared Socioeconomic Pathways (SSPs). The CMIP6 GCM runs were developed in support of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6). This dataset includes downscaled projections from ScenarioMIP model runs for which daily scenarios were produced and distributed...

Details →

Usage examples

See 3 usage examples →

NASA High Energy Astrophysics Mission Data

archivesastronomydatacenterimagingsatellite imageryx-ray

NASA data for high energy astrophysics (generally x-ray and gamma-ray domains) is made available here by the High Energy Astrophysics Science Archive Research Center. The HEASARC hosts the full data archives of over 30 different missions spanning 50 years. The data archive for each mission will contain a range of data types from spacecraft housekeeping and raw photon event list data up to high level science-ready products such as images, light curves (time series), and energy spectra.

This is a relatively modest total data volume but contains significant complexity and heterogeneity among the different missions. Data provided here are stored in the Flexible Image Transport System (FITS) format common in astronomy. Higher level products are further defined to be consistent between missions following data model standards agreed by the community and maintained by the HEASARC. Analysis of these data may require software also provided by HEASARC, the HEASoft package, consisting of tools generic to all FITS data, generic to all HEASARC-compliant data, and/or specific to individual missions as appropriate. Some missions provide standard science-ready data products, while others provide low-level data types and software to generate science-ready products from them. See the links for each mission for more information on how to use the data.

The HEASARC Website also has archive browsing tools where you can query for observations corresponding to temporal and spatial constraints among others. These tools will ultimately point to files located on the archive by giving a URL beginning with the path https://heasarc.gsfc.nasa.gov/FTP/. The data that are provided in the ODR follow the same structure, so when our tools give an https access URL, a user can simply swap in s3://nasa-heasarc/ for the first part of that URL and get a cloud URI. Note also that some selections have been made to what has been copied to the ODR, while the HEASARC archive itself remains the definitive and legacy source for the complete datasets.

The HEASARC also...

Details →

Usage examples

See 3 usage examples →

NASA Legacy Archive for Microwave Background Data Analysis (LAMBDA)

archivesastronomydatacenterimagingsatellite imagery

NASA data for cosmic microwave background (CMB) analysis is made available here by the Legacy Archive for Microwave Background Data Analysis (LAMBDA), which is a part of NASA's High Energy Astrophysics Science Archive Research Center (HEASARC). LAMBDA hosts the data archives of over 30 different CMB missions spanning 30+ years. The data archive for each mission may contain a range of data types from low-level time-ordered data to high level science-ready products such as sky maps and angular power spectra. Also provided in consistent formats are a variety of full sky maps in complementary ...

Details →

Usage examples

See 3 usage examples →

NASA SOHO/LASCO2 comet challenge on AWS

astronomymachine learningNASA SMD AI

The SOHO/LASCO data set (prepared for the challenge hosted in Topcoder) provided here comes from the instrument’s C2 telescope and comprises approximately 36,000 images spread across 2,950 comet observations. The human eye is a very sensitive tool and it is the only tool currently used to reliably detect new comets in SOHO data - particularly comets that are very faint and embedded in the instrument background noise. Bright comets can be easily detected in the LASCO data by relatively simple automated algorithms, but the majority of comets observed by the instrument are extremely faint, noise-...

Details →

Usage examples

See 3 usage examples →

NASA Space Biology Open Science Data Repository (OSDR)

bioinformaticsbiologyGeneLabgenomicimaginglife sciencesspace biology

NASA’s Space Biology Open Science Data Repository (OSDR) introduces a one-stop site where users can explore and contribute a variety of NASA open science biological data. This site consolidates data from the Ames Life Sciences Data Archive (ALSDA) and GeneLab and includes information about the broader NASA Open Science and Open Data initiatives, all at one centralized location. Our mission is to maximize the utilization of the valuable biological research resources and enable new discoveries.

OSDR introduces access to data generated from spaceflight and space relevant experiments that explore
...

Details →

Usage examples

See 3 usage examples →

Astrophysics Division Galaxy Segmentation Benchmark Dataset

astronomymachine learningNASA SMD AIsegmentation

Pan-STARSS imaging data and associated labels for galaxy segmentation into galactic centers, galactic bars, spiral arms and foreground stars derived from citizen scientist labels from the Galaxy Zoo: 3D project.

Details →

Usage examples

See 2 usage examples →

Biological and Physical Sciences (BPS) Microscopy Benchmark Training Dataset

fluorescence imagingGeneLabgeneticgenetic mapslife sciencesmicroscopyNASA SMD AI

Fluorescence microscopy images of individual nuclei from mouse fibroblast cells, irradiated with Fe particles or X-rays with fluorescent foci indicating 53BP1 positivity, a marker of DNA damage. These are maximum intensity projections of 9-layer microscopy Z-stacks.

Details →

Usage examples

See 2 usage examples →

Biological and Physical Sciences (BPS) RNA Sequencing Benchmark Training Dataset

gene expressionGeneLabgeneticgenetic mapslife sciencesNASA SMD AIspace biology

RNA sequencing data from spaceflown and control mouse liver samples, sourced from NASA GeneLab and augmented with generative adversarial network.

Details →

Usage examples

See 2 usage examples →

NASA Physical Sciences Informatics (PSI)

chemistryfluid dynamicsmaterials sciencephysicsspace biology

NASA's Physical Sciences Research Program, along with its predecessors, has conducted significant fundamental and applied research in the physical sciences. The International Space Station (ISS) is an orbiting laboratory that provides an ideal facility to conduct long-duration experiments in the near absence of gravity and allows continuous and interactive research similar to Earth-based laboratories. This enables scientists to pursue innovations and discoveries not currently achievable by other means. NASA's Physical Sciences Research Program also benefits from collaborations with several of the ISS international partners—Europe, Russia, Japan, and Canada—and foreign governments with space programs, such as France, Germany and Italy.

In fulfillment of the Open Science model, NASA's Physical Sciences Research Program is pleased to offer the PSI data repository for physical science experiments performed in reduced-gravity environments such as the ISS, Space Shuttle flights, and Free-flyers. PSI also includes data from some related ground-based studies. The PSI system is accessible and open to the public. This provides the opportunity for researchers to data mine results from prior flight investigations, expanding on the research performed. This approach will allow numerous ground-based investigations to be conducted fro
...

Details →

Usage examples

See 2 usage examples →

Nighttime-Fire-Flare

anomaly detectionclassificationdisaster responseearth observationenvironmentalNASA SMD AIsatellite imagerysocioeconomicurban

Detection of nighttime combustion (fire and gas flaring) from daily top of atmosphere data from NASA's Black Marble VNP46A1 product using VIIRS Day/Night Band and VIIRS thermal bands.

Details →

Usage examples

See 2 usage examples →

Terra Fusion Data Sampler

geospatialsatellite imagery

The Terra Basic Fusion dataset is a fused dataset of the original Level 1 radiances from the five Terra instruments. They have been fully validate to contain the original Terra instrument Level 1 data. Each Level 1 Terra Basic Fusion file contains one full Terra orbit of data and is typically 15 – 40 GB in size, depending on how much data was collected for that orbit. It contains instrument radiance in physical units; radiance quality indicator; geolocation for each IFOV at its native resolution; sun-view geometry; bservation time; and other attributes/metadata. It is stored in HDF5, conformed to CF conventions, and accessible by netCDF-4 enhanced models. It’s naming convention follows: TERRA_BF_L1B_OXXXX_YYYYMMDDHHMMSS_F000_V000.h5. A concise description of the dataset, along with links to complete documentation and available software tools, can be found on the Terra Fusion project page: https://terrafusion.web.illinois.edu.

Terra is the flagship satellite of NASA’s Earth Observing System (EOS). It was launched into orbit on December 18, 1999 and carries five instruments. These are the Moderate-resolution Imaging Spectroradiometer (MODIS), the Multi-angle Imaging SpectroRadiometer (MISR), the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), the Clouds and Earth’s Radiant Energy System (CERES), and the Measurements of Pollution in the Troposphere (MOPITT).

The Terra Basic Fusion dataset is an easy-to-access record of the Level 1 radiances for instruments on...

Details →

Usage examples

See 2 usage examples →

3-Band Cryo Data | Wide-field Infrared Survey Explorer (WISE)

astronomyimagingsatellite imagerysurvey

The Wide-field Infrared Survey Explorer (WISE) was a NASA Medium Explorer satellite in low-Earth orbit that conducted an all-sky astronomical imaging survey over four infrared bands from 2010-2011. The 3-Band Cryo Data Release contains 3.4, 4.6 and 12 micron (W1, W2, W3) imaging data that were acquired between 6 Aug and 29 Sept 2010 while the detectors were cooled by the inner cryogen tank following the exhaustion of the outer tank.

Details →

Usage examples

See 1 usage example →

All-Sky Data | Wide-field Infrared Survey Explorer (WISE)

astronomyimagingsatellite imagerysurvey

The Wide-field Infrared Survey Explorer (WISE) was a NASA Medium Explorer satellite in low-Earth orbit that conducted an all-sky astronomical imaging survey over four infrared bands from 2010-2011. The All-Sky Release includes all data taken during the WISE full cryogenic mission phase, 7 January 2010 to 6 August 2010, in the 3.4, 4.6, 12, and 22 micron bands (i.e., W1, W2, W3, W4) that were processed with improved calibrations and reduction algorithms.

Details →

Usage examples

See 1 usage example →

AllWISE Data | Wide-field Infrared Survey Explorer (WISE)

astronomyimagingobject detectionparquetsatellite imagerysurvey

The Wide-field Infrared Survey Explorer (WISE) was a NASA Medium Explorer satellite in low-Earth orbit that conducted an all-sky astronomical imaging survey over four infrared bands from 2010-2011. The AllWISE Data Release combines data from all cryogenic and post-cryogenic survey phases and provides a comprehensive view of the mid-infrared sky. The Images Atlas includes 18,240 FITS image sets at 3.4, 4.6, 12 and 22 microns. The Source Catalog contains position, apparent motion, and flux information for over 747 million objects detected on the Atlas Images.

Details →

Usage examples

See 1 usage example →

Astrophysics Division Galaxy Morphology Benchmark Dataset

astronomymachine learningNASA SMD AIsatellite imagery

Hubble Space Telescope imaging data and associated identification labels for galaxy morphology derived from citizen scientist labels from the Galaxy Zoo: Hubble project.

Details →

Usage examples

  • Galaxy Zoo: morphological classifications for 120 000 galaxies in HST legacy imaging by Kyle W. Willett, Melanie A. Galloway, Steven P. Bamford, Chris J. Lintott, Karen L. Masters, Claudia Scarlata, B. D. Simmons, Melanie Beck, Carolin N. Cardamone, Edmond Cheung, Edward M. Edmondson, Lucy F. Fortson, Roger L. Griffith, Boris Häußler, Anna Han, Ross Hart, Thomas Melvin, Michael Parrish, Kevin Schawinski, R. J. Smethurst, Arfon M. Smith

See 1 usage example →

Mars Spectrometry 2: Gas Chromatography for the Sample Analysis at Mars Data (SAM) Instrument

analyticsarchivesdeep learningmachine learningNASA SMD AIplanetary

NASA missions like the Curiosity and Perseverance rovers carry a rich array of instruments suited to collect data and build evidence towards answering if Mars ever had livable environmental conditions. These rovers can collect rock and soil samples and can take measurements that can be used to determine their chemical makeup.

Because communication between rovers and Earth is severely constrained, with limited transfer rates and short daily communication windows, scientists have a limited time to analyze the data and make difficult inferences about the chemistry in order to prioritize the next operations and send those instructions back to the rover.

This project aimed at building a model to automatically analyze gas chromatography mass spectrometry (GCMS) data collected for Mars exploration in order to help the scientists in their analysis of understanding the past habitability of Mars.

More information are available at https://mars.nasa.gov/msl/spacecraft/instruments/sam/ and the data from Mars are available and described at https://pds-geosciences.wustl.edu/missions/msl/sam.htm.

We request that you cite th...

Details →

Usage examples

See 1 usage example →

Mars Spectrometry: Detect Evidence for Past Habitability

analyticsarchivesdeep learningmachine learningNASA SMD AIplanetary

NASA missions like the Curiosity and Perseverance rovers carry a rich array of instruments suited to collect data and build evidence towards answering if Mars ever had livable environmental conditions. These rovers can collect rock and soil samples and can take measurements that can be used to determine their chemical makeup.

Because communication between rovers and Earth is severely constrained, with limited transfer rates and short daily communication windows, scientists have a limited time to analyze the data and make difficult inferences about the chemistry in order to prioritize the next operations and send those instructions back to the rover.

This project aimed at building a model to automatically analyze evolved gas analysis mass spectrometry (EGA-MS) data collected for Mars exploration in order to help the scientists in their analysis of understanding the past habitability of Mars.

More information are available at https://mars.nasa.gov/msl/spacecraft/instruments/sam/ and the data from Mars are available and described at https://pds-geosciences.wustl.edu/missions/msl/sam.htm.

We request that you ci...

Details →

Usage examples

See 1 usage example →

NEOWISE Post-Cryo Data | Wide-field Infrared Survey Explorer (WISE)

astronomyimagingsatellite imagerysurvey

The Wide-field Infrared Survey Explorer (WISE) was a NASA Medium Explorer satellite in low-Earth orbit that conducted an all-sky astronomical imaging survey over four infrared bands from 2010-2011. The NEOWISE Post-Cryo Data Release contains 3.4 and 4.6 micron (W1 and W2) imaging data that were acquired between 29 September 2010 and 1 February 2011 following the exhaustion of the inner and outer cryogen tanks.

Details →

Usage examples

See 1 usage example →

NEOWISE Reactivation Data | Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE)

astronomyimagingobject detectionparquetsatellite imagerysurvey

The Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) is a NASA Medium-class Explorer satellite in low-Earth orbit conducting an all-sky astronomical imaging survey over two infrared bands. The NEOWISE Reactivation mission began in 2013 when the original WISE satellite was brought out of hibernation to learn more about the population of near-Earth objects and comets that could pose an impact hazard to the Earth. The data is also used to study a wide range of astrophysical phenomena in the time domain including brown dwarfs, supernovae and active galactic nuclei.

Details →

Usage examples

See 1 usage example →

OpenUniverse 2024 Matched Rubin and Roman Simulations: Preview

astronomyimagingobject detectionparquetsatellite imagerysimulationssurvey

This release consists of simulated data products designed to mimic observations of the same region of the sky as seen by two astronomical facilities: the Nancy Grace Roman Telescope and the Vera C. Rubin Observatory.

Details →

Usage examples

See 1 usage example →

Spitzer Enhanced Imaging Products (SEIP) Super Mosaics

astronomyimagingsatellite imagerysurvey

Spitzer was an infrared astronomy space telescope with imaging from 3 to 160 microns and spectroscopy from 5 to 37 microns, launched into an Earth-trailing solar orbit as the last of NASA's Great Observatories. The SEIP Super Mosaics include data from the four channels of IRAC (3.6, 4.5, 5.8, 8 microns) and the 24 micron channel of MIPS. Data from multiple programs are combined where appropriate. Cryogenic Release v3.0 includes Spitzer data taken during commissioning and cryogenic operations, including calibration data.

Details →

Usage examples

See 1 usage example →

Unblurred Coadds of the Wide-field Infrared Survey Explorer (unWISE)

astronomyobject detectionparquetsurvey

unWISE is a reprocessing of Wide-field Infrared Survey Explorer (WISE) data which preserves the native angular resolution and is optimized for forced photometry. WISE was a NASA satellite producing all-sky imaging in four infrared bands centered at 3.4, 4.6, 12 and 22 microns (W1, W2, W3, and W4) starting in 2010 until the coolant was exhausted in 2011. It was reactivated in 2013 as NEOWISE and continued imaging in W1 and W2 until 2024.

Details →

Usage examples

See 1 usage example →

NASA SOTERIA Simulation Testbed Data

life sciencesneuroimagingtransportationworkload analysis

Commercial pilot simulation data during safety-of-flight scenarios.

Details →

Usage examples

See 2 usage examples →