The Registry of Open Data on AWS is now available on AWS Data Exchange
All datasets on the Registry of Open Data are now discoverable on AWS Data Exchange alongside 3,000+ existing data products from category-leading data providers across industries. Explore the catalog to find open, free, and commercial data sets. Learn more about AWS Data Exchange

About

This registry exists to help people discover and share datasets that are available via AWS resources. See recent additions and learn more about sharing data on AWS.

See all usage examples for datasets listed in this registry tagged with IMU.


Search datasets (currently 13 matching datasets)

You are currently viewing a subset of data tagged with IMU.


Add to this registry

If you want to add a dataset or example of how to use a dataset to this registry, please follow the instructions on the Registry of Open Data on AWS GitHub repository.

Unless specifically stated in the applicable dataset documentation, datasets available through the Registry of Open Data on AWS are not provided and maintained by AWS. Datasets are provided and maintained by a variety of third parties under a variety of licenses. Please check dataset licenses and related documentation to determine if a dataset may be used for your application.


Tell us about your project

If you have a project using a listed dataset, please tell us about it. We may work with you to feature your project in a blog post.

CitrusFarm Dataset

agriculturecomputer visionIMUlidarlocalizationmappingrobotics

CitrusFarm is a multimodal agricultural robotics dataset that provides both multispectral images and navigational sensor data for localization, mapping and crop monitoring tasks.

  1. It was collected by a wheeled mobile robot in the Agricultural Experimental Station at the University of California Riverside in the summer of 2023.
  2. It offers a total of nine sensing modalities, including stereo RGB, depth, monochrome, near-infrared and thermal images, as well as wheel odometry, LiDAR, IMU and GPS-RTK data.
  3. It comprises seven sequences collected from three citrus tree fields, featuring various tree species at different growth stages, distinctive planting patterns, as well as varying daylight conditions.
  4. It spans a total operation time of 1.7 hours, covers a total distance of 7.5 km, and consti...

    Details →

    Usage examples

    See 3 usage examples →

MAN TruckScenes

autonomous vehiclescomputer visiondeep learningGPSIMUlidarlogisticsmachine learningobject detectionobject trackingperceptionradarroboticstransportation

A large scale multimodal dataset for Autonomous Trucking. Sensor data was recorded with a heavy truck from MAN equipped with 6 lidars, 6 radars, 4 cameras and a high-precision GNSS. MAN TruckScenes allows the research community to come into contact with truck-specific challenges, such as trailer occlusions, novel sensor perspectives, and terminal environments for the first time. It comprises more than 740 scenes of 20s each within a multitude of different environmental conditions. Bounding boxes are available for 27 object classes, 15 attributes, and a range of more than 230m. The scenes are t...

Details →

Usage examples

See 4 usage examples →

Multi-robot, Multi-Sensor, Multi-Environment Event Dataset (M3ED)

autonomous vehiclescomputer visiondeep learningevent cameraglobal shutter cameraGNSSGPSh5hdf5IMUlidarmachine learningperceptionroboticsRTK

M3ED is the first multi-sensor event camera (EC) dataset focused on high-speed dynamic motions in robotics applications. M3ED provides high-quality synchronized data from multiple platforms (car, legged robot, UAV), operating in challenging conditions such as off-road trails, dense forests, and performing aggressive flight maneuvers. M3ED also covers demanding operational scenarios for EC, such as high egomotion and multiple independently moving objects. M3ED includes high-resolution stereo EC (1280×720), grayscale and RGB cameras, a high-quality IMU, a 64-beam LiDAR, and RTK localization.

Details →

Usage examples

See 1 usage example →