This registry exists to help people discover and share datasets that are available via AWS resources. See recent additions and learn more about sharing data on AWS.
See all usage examples for datasets listed in this registry tagged with radiology.
You are currently viewing a subset of data tagged with radiology.
If you want to add a dataset or example of how to use a dataset to this registry, please follow the instructions on the Registry of Open Data on AWS GitHub repository.
Unless specifically stated in the applicable dataset documentation, datasets available through the Registry of Open Data on AWS are not provided and maintained by AWS. Datasets are provided and maintained by a variety of third parties under a variety of licenses. Please check dataset licenses and related documentation to determine if a dataset may be used for your application.
If you have a project using a listed dataset, please tell us about it. We may work with you to feature your project in a blog post.
cancerdigital pathologyfluorescence imagingimage processingimaginglife sciencesmachine learningmicroscopyradiology
Imaging Data Commons (IDC) is a repository within the Cancer Research Data Commons (CRDC) that manages imaging data and enables its integration with the other components of CRDC. IDC hosts a growing number of imaging collections that are contributed by either funded US National Cancer Institute (NCI) data collection activities, or by the individual researchers.Image data hosted by IDC is stored in DICOM format.
bioinformaticsbiologycomputer visioncsvhealthimaginglabeledlife sciencesmachine learningmedical image computingmedical imagingradiologyx-ray
The Emory Knee Radiograph (MRKR) dataset is a large, demographically diverse collection of 503,261 knee radiographs from 83,011 patients, 40% of which are African American. This dataset provides imaging data in DICOM format along with detailed clinical information, including patient- reported pain scores, diagnostic codes, and procedural codes, which are not commonly available in similar datasets. The MRKR dataset also features imaging metadata such as image laterality, view type, and presence of hardware, enhancing its value for research and model development. MRKR addresses significant gaps ...
computed tomographycomputer visioncsvlabeledlife sciencesmachine learningmedical image computingmedical imagingradiologyx-ray tomography
Blunt force abdominal trauma is among the most common types of traumatic injury, with the most frequent cause being motor vehicle accidents. Abdominal trauma may result in damage and internal bleeding of the internal organs, including the liver, spleen, kidneys, and bowel. Detection and classification of injuries are key to effective treatment and favorable outcomes. A large proportion of patients with abdominal trauma require urgent surgery. Abdominal trauma often cannot be diagnosed clinically by physical exam, patient symptoms, or laboratory tests. Prompt diagnosis of abdominal trauma using...
computed tomographycomputer visioncsvlabeledlife sciencesmachine learningmedical image computingmedical imagingradiologyx-ray tomography
Over 1.5 million spine fractures occur annually in the United States alone resulting in over 17,730 spinal cord injuries annually. The most common site of spine fracture is the cervical spine. There has been a rise in the incidence of spinal fractures in the elderly and in this population, fractures can be more difficult to detect on imaging due to degenerative disease and osteoporosis. Imaging diagnosis of adult spine fractures is now almost exclusively performed with computed tomography (CT). Quickly detecting and determining the location of any vertebral fractures is essential to prevent ne...
computed tomographycomputer visioncsvlabeledlife sciencesmachine learningmedical image computingmedical imagingradiologyx-ray tomography
RSNA assembled this dataset in 2019 for the RSNA Intracranial Hemorrhage Detection AI Challenge (https://www.kaggle.com/c/rsna-intracranial-hemorrhage-detection/). De-identified head CT studies were provided by four research institutions. A group of over 60 volunteer expert radiologists recruited by RSNA and the American Society of Neuroradiology labeled over 25,000 exams for the presence and subtype classification of acute intracranial hemorrhage.
computed tomographycomputer visioncsvlabeledlife sciencesmachine learningmedical image computingmedical imagingradiologyx-ray tomography
RSNA assembled this dataset in 2020 for the RSNA STR Pulmonary Embolism Detection AI Challenge (https://www.kaggle.com/c/rsna-str-pulmonary-embolism-detection/). With more than 12,000 CT pulmonary angiography (CTPA) studies contributed by five international research centers, it is the largest publicly available annotated PE dataset. RSNA collaborated with the Society of Thoracic Radiology to recruit more than 80 expert thoracic radiologists who labeled the dataset with detailed clinical annotations.
breast cancercancercomputer visioncsvlabeledlife sciencesmachine learningmammographymedical image computingmedical imagingradiology
According to the WHO, breast cancer is the most commonly occurring cancer worldwide. In 2020 alone, there were 2.3 million new breast cancer diagnoses and 685,000 deaths. Yet breast cancer mortality in high-income countries has dropped by 40% since the 1980s when health authorities implemented regular mammography screening in age groups considered at risk. Early detection and treatment are critical to reducing cancer fatalities, and your machine learning skills could help streamline the process radiologists use to evaluate screening mammograms. Currently, early detection of breast cancer requi...
cancerlife sciencesmagnetic resonance imagingmedical imagingmedicineradiology
The University of California San Francisco Brain Metastases Stereotactic Radiosurgery (UCSF-BMSR) dataset is a public, clinical, multimodal brain MRI dataset consisting of 560 brain MRIs from 412 patients with expert annotations of 5136 brain metastases. Data consists of registered and skull stripped T1 post-contrast, T1 pre-contrast, FLAIR and subtraction (T1 pre-contrast - T1 post-contrast) images and voxelwise segmentations of enhancing brain metastases in NifTI format.